The official pytorch implementation of ViTAE: Vision Transformer Advanced by Exploring Intrinsic Inductive Bias

Related tags

Data AnalysisViTAE
Overview

ViTAE: Vision Transformer Advanced by Exploring Intrinsic Inductive Bias

Introduction | Updates | Usage | Results&Pretrained Models | Statement |

Introduction

This repository contains the code, models, test results for the paper ViTAE: Vision Transformer Advanced by Exploring Intrinsic Inductive Bias. It contains several reduction cells and normal cells to introduce scale-invariance and locality into vision transformers.

Updates

07/12/2021 The code is released!

19/10/2021 The paper is accepted by Neurips'2021! The code will be released soon!

06/08/2021 The paper is post on arxiv! The code will be made public available once cleaned up.

Usage

Install

  • Clone this repo:
git clone https://github.com/Annbless/ViTAE.git
cd ViTAE
  • Create a conda virtual environment and activate it:
conda create -n vitae python=3.7 -y
conda activate vitae
conda install pytorch==1.8.1 torchvision==0.9.1 cudatoolkit=10.2 -c pytorch -c conda-forge
  • Install timm==0.3.4:
pip install timm==0.3.4
  • Install Apex:
git clone https://github.com/NVIDIA/apex
cd apex
git reset --hard a651e2c24ecf97cbf367fd3f330df36760e1c597
pip install -v --disable-pip-version-check --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./
  • Install other requirements:
pip install pyyaml ipdb

Data Prepare

We use standard ImageNet dataset, you can download it from http://image-net.org/. The file structure should look like:

$ tree data
imagenet
├── train
│   ├── class1
│   │   ├── img1.jpeg
│   │   ├── img2.jpeg
│   │   └── ...
│   ├── class2
│   │   ├── img3.jpeg
│   │   └── ...
│   └── ...
└── val
    ├── class1
    │   ├── img4.jpeg
    │   ├── img5.jpeg
    │   └── ...
    ├── class2
    │   ├── img6.jpeg
    │   └── ...
    └── ...

Evaluation

Take ViTAE_basic_7 as an example, to evaluate the pretrained ViTAE model on ImageNet val, run

python validate.py [ImageNetPath] --model ViTAE_basic_7 --eval_checkpoint [Checkpoint Path]

Training

Take ViTAE_basic_7 as an example, to train the ViTAE model on ImageNet with 4 GPU and 512 batch size, run

python -m torch.distributed.launch --nproc_per_node=4 main.py [ImageNetPath] --model ViTAE_basic_7 -b 128 --lr 1e-3 --weight-decay .03 --img-size 224 --amp

The trained model file will be saved under the output folder

Results

Main Results on ImageNet-1K with pretrained models

name resolution [email protected] [email protected] [email protected] Pretrained
ViTAE-T 224x224 75.3 92.7 82.9 Coming Soon
ViTAE-6M 224x224 77.9 94.1 84.9 Coming Soon
ViTAE-13M 224x224 81.0 95.4 86.9 Coming Soon
ViTAE-S 224x224 82.0 95.9 87.0 Coming Soon

Statement

This project is for research purpose only. For any other questions please contact yufei.xu at outlook.com qmzhangzz at hotmail.com .

A lightweight interface for reading in output from the Weather Research and Forecasting (WRF) model into xarray Dataset

xwrf A lightweight interface for reading in output from the Weather Research and Forecasting (WRF) model into xarray Dataset. The primary objective of

National Center for Atmospheric Research 43 Nov 29, 2022
Stock Analysis dashboard Using Streamlit and Python

StDashApp Stock Analysis Dashboard Using Streamlit and Python If you found the content useful and want to support my work, you can buy me a coffee! Th

StreamAlpha 27 Dec 09, 2022
Codes for the collection and predictive processing of bitcoin from the API of coinmarketcap

Codes for the collection and predictive processing of bitcoin from the API of coinmarketcap

Teo Calvo 5 Apr 26, 2022
A program that uses an API and a AI model to get info of sotcks

Stock-Market-AI-Analysis I dont mind anyone using this code but please give me credit A program that uses an API and a AI model to get info of stocks

1 Dec 17, 2021
A collection of learning outcomes data analysis using Python and SQL, from DQLab.

Data Analyst with PYTHON Data Analyst berperan dalam menghasilkan analisa data serta mempresentasikan insight untuk membantu proses pengambilan keputu

6 Oct 11, 2022
An interactive grid for sorting, filtering, and editing DataFrames in Jupyter notebooks

qgrid Qgrid is a Jupyter notebook widget which uses SlickGrid to render pandas DataFrames within a Jupyter notebook. This allows you to explore your D

Quantopian, Inc. 2.9k Jan 08, 2023
Package for decomposing EMG signals into motor unit firings, as used in Formento et al 2021.

EMGDecomp Package for decomposing EMG signals into motor unit firings, created for Formento et al 2021. Based heavily on Negro et al, 2016. Supports G

13 Nov 01, 2022
NumPy aware dynamic Python compiler using LLVM

Numba A Just-In-Time Compiler for Numerical Functions in Python Numba is an open source, NumPy-aware optimizing compiler for Python sponsored by Anaco

Numba 8.2k Jan 07, 2023
Py-price-monitoring - A Python price monitor

A Python price monitor This project was focused on Brazil, so the monitoring is

Samuel 1 Jan 04, 2022
Statistical Rethinking: A Bayesian Course Using CmdStanPy and Plotnine

Statistical Rethinking: A Bayesian Course Using CmdStanPy and Plotnine Intro This repo contains the python/stan version of the Statistical Rethinking

Andrés Suárez 3 Nov 08, 2022
EOD Historical Data Python Library (Unofficial)

EOD Historical Data Python Library (Unofficial) https://eodhistoricaldata.com Installation python3 -m pip install eodhistoricaldata Note Demo API key

Michael Whittle 20 Dec 22, 2022
TextDescriptives - A Python library for calculating a large variety of statistics from text

A Python library for calculating a large variety of statistics from text(s) using spaCy v.3 pipeline components and extensions. TextDescriptives can be used to calculate several descriptive statistic

150 Dec 30, 2022
Open-source Laplacian Eigenmaps for dimensionality reduction of large data in python.

Fast Laplacian Eigenmaps in python Open-source Laplacian Eigenmaps for dimensionality reduction of large data in python. Comes with an wrapper for NMS

17 Jul 09, 2022
Tokyo 2020 Paralympics, Analytics

Tokyo 2020 Paralympics, Analytics Thanks for checking out my app! It was built entirely using matplotlib and Tokyo 2020 Paralympics data. This applica

Petro Ivaniuk 1 Nov 18, 2021
The Spark Challenge Student Check-In/Out Tracking Script

The Spark Challenge Student Check-In/Out Tracking Script This Python Script uses the Student ID Database to match the entries with the ID Card Swipe a

1 Dec 09, 2021
Amundsen is a metadata driven application for improving the productivity of data analysts, data scientists and engineers when interacting with data.

Amundsen is a metadata driven application for improving the productivity of data analysts, data scientists and engineers when interacting with data.

Amundsen 3.7k Jan 03, 2023
Data imputations library to preprocess datasets with missing data

Impyute is a library of missing data imputation algorithms. This library was designed to be super lightweight, here's a sneak peak at what impyute can do.

Elton Law 329 Dec 05, 2022
nrgpy is the Python package for processing NRG Data Files

nrgpy nrgpy is the Python package for processing NRG Data Files Website and source: https://github.com/nrgpy/nrgpy Documentation: https://nrgpy.github

NRG Tech Services 23 Dec 08, 2022
A utility for functional piping in Python that allows you to access any function in any scope as a partial.

WithPartial Introduction WithPartial is a simple utility for functional piping in Python. The package exposes a context manager (used with with) calle

Michael Milton 1 Oct 26, 2021
MIR Cheatsheet - Survival Guidebook for MIR Researchers in the Lab

MIR Cheatsheet - Survival Guidebook for MIR Researchers in the Lab

SeungHeonDoh 3 Jul 02, 2022