YourTTS: Towards Zero-Shot Multi-Speaker TTS and Zero-Shot Voice Conversion for everyone

Overview

YourTTS: Towards Zero-Shot Multi-Speaker TTS and Zero-Shot Voice Conversion for everyone

In our recent paper we propose the YourTTS model. YourTTS brings the power of a multilingual approach to the task of zero-shot multi-speaker TTS. Our method builds upon the VITS model and adds several novel modifications for zero-shot multi-speaker and multilingual training. We achieved state-of-the-art (SOTA) results in zero-shot multi-speaker TTS and results comparable to SOTA in zero-shot voice conversion on the VCTK dataset. Additionally, our approach achieves promising results in a target language with a single-speaker dataset, opening possibilities for zero-shot multi-speaker TTS and zero-shot voice conversion systems in low-resource languages. Finally, it is possible to fine-tune the YourTTS model with less than 1 minute of speech and achieve state-of-the-art results in voice similarity and with reasonable quality. This is important to allow synthesis for speakers with a very different voice or recording characteristics from those seen during training.

Audios samples

Visit our website for audio samples.

Implementation

All of our experiments were implemented on the Coqui TTS repo. (Still a PR).

Colab Demos

Demo URL
Zero-Shot TTS link
Zero-Shot VC link

Checkpoints

All the released checkpoints are licensed under CC BY-NC-ND 4.0

Model URL
Speaker Encoder link
Exp 1. YourTTS-EN(VCTK) link
Exp 1. YourTTS-EN(VCTK) + SCL link
Exp 2. YourTTS-EN(VCTK)-PT link
Exp 2. YourTTS-EN(VCTK)-PT + SCL link
Exp 3. YourTTS-EN(VCTK)-PT-FR link
Exp 3. YourTTS-EN(VCTK)-PT-FR SCL link
Exp 4. YourTTS-EN(VCTK+LibriTTS)-PT-FR SCL link

Results replicability

To insure replicability, we make the audios used to generate the MOS available here. In addition, we provide the MOS for each audio here.

To re-generate our MOS results, follow the instructions here. To predict the test sentences and generate the SECS, please use the Jupyter Notebooks available here.

Comments
  • Languages other than PT, FR, EN

    Languages other than PT, FR, EN

    As YourTTS is multilingual TTS, I think that by training datasets, it seems that other languages might be available. However, YourTTS's checkpoint structure seems distinctive. Is there any training procedures that I can refer?

    opened by papercore-dev 7
  • Issue with Input type and weight type should be the same

    Issue with Input type and weight type should be the same

    Hi,

    I am trying to train YourTTS on my own dataset. So I followed your helpful guide with the latest stable version of Coqui TTS (0.8.0).

    After computing the embeddings (on GPU) without issue, I run into this RuntimeError: Input type (torch.cuda.FloatTensor) and weight type (torch.FloatTensor) should be the same.

    I have already trained a VITS model with this dataset so everything is already set up. I understood that input Tensor resides on GPU whereas weight Tensor resides on CPU but how can I solve this ? Should I downgrade to CoquiTTS 0.6.2 ?

    Here is the full traceback :

    File "/home/caraduf/YourTTS/yourtts_env/lib/python3.10/site-packages/trainer/trainer.py", line 1533, in fit
        self._fit()
      File "/home/caraduf/YourTTS/yourtts_env/lib/python3.10/site-packages/trainer/trainer.py", line 1517, in _fit
        self.train_epoch()
      File "/home/caraduf/YourTTS/yourtts_env/lib/python3.10/site-packages/trainer/trainer.py", line 1282, in train_epoch
        _, _ = self.train_step(batch, batch_num_steps, cur_step, loader_start_time)
      File "/home/caraduf/YourTTS/yourtts_env/lib/python3.10/site-packages/trainer/trainer.py", line 1135, in train_step
        outputs, loss_dict_new, step_time = self._optimize(
      File "/home/caraduf/YourTTS/yourtts_env/lib/python3.10/site-packages/trainer/trainer.py", line 996, in _optimize
        outputs, loss_dict = self._model_train_step(batch, model, criterion, optimizer_idx=optimizer_idx)
      File "/home/caraduf/YourTTS/yourtts_env/lib/python3.10/site-packages/trainer/trainer.py", line 954, in _model_train_step
        return model.train_step(*input_args)
      File "/home/caraduf/YourTTS/TTS/TTS/tts/models/vits.py", line 1250, in train_step
        outputs = self.forward(
      File "/home/caraduf/YourTTS/TTS/TTS/tts/models/vits.py", line 1049, in forward
        pred_embs = self.speaker_manager.encoder.forward(wavs_batch, l2_norm=True)
      File "/home/caraduf/YourTTS/TTS/TTS/encoder/models/resnet.py", line 169, in forward
        x = self.torch_spec(x)
      File "/home/caraduf/YourTTS/yourtts_env/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1130, in _call_impl
        return forward_call(*input, **kwargs)
      File "/home/caraduf/YourTTS/yourtts_env/lib/python3.10/site-packages/torch/nn/modules/container.py", line 139, in forward
        input = module(input)
      File "/home/caraduf/YourTTS/yourtts_env/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1130, in _call_impl
        return forward_call(*input, **kwargs)
      File "/home/caraduf/YourTTS/TTS/TTS/encoder/models/base_encoder.py", line 22, in forward
        return torch.nn.functional.conv1d(x, self.filter).squeeze(1)
    RuntimeError: Input type (torch.cuda.FloatTensor) and weight type (torch.FloatTensor) should be the same
    

    Thanks for helping me out!

    opened by Ca-ressemble-a-du-fake 6
  •  Speaker Encoder train on new language

    Speaker Encoder train on new language

    Hi, Can you elaborate about the source of where you get Speaker Encoder, and how do you train it with additional languages? How do you use model Wav2Vec which trained from fairseq? on config_se.json "run_description": "resnet speaker encoder trained with commonvoice all languages dev and train, Voxceleb 1 dev and Voxceleb 2 dev". Which languages include in this CV? which version of CV in this training? Thanks.

    opened by ikcla 5
  • YourTTS_zeroshot_VC_demo.ipynb

    YourTTS_zeroshot_VC_demo.ipynb

    Hi! I am trying to run YourTTS_zeroshot_VC_demo.ipynb and there seems to be access changes to the file best_model.pth.tar I am downloading it right now and I will manually upload it, so that I can run the notebook, but could you kindly fix the access rights so that others could easily run it like it was before. Thank you in advance! image

    opened by stalevna 5
  • train our own voice model

    train our own voice model

    Hi ,

    I have found your repo very interesting. So, I am trying out this. I am curious to know about training our voice files to creating checkpoint without involvement of text(As i have seen in previous issues to take reference of coqui model training) and without altering config.json. Can you please guide us how to proceed on this further.

    opened by chandrakanthlns 4
  • Train YourTTS on another language

    Train YourTTS on another language

    Good day!

    I have several questions, could you please help?

    Do I understand correctly that if I want to train the model on another language it is better to fine tune this model (YourTTS-EN(VCTK+LibriTTS)-PT-FR SCL): https://drive.google.com/drive/folders/15G-QS5tYQPkqiXfAdialJjmuqZV0azQV Or it is better to use other checkpoints.

    How many hours of audio is needed to have appropriate quality?

    I planned to use Common Voice Corpus to fine-tune the model on a new language, however, the audio format is mp3 not wav. Do I need to convert all the audio files or I can use mp3 format. If yes, how?

    Thank you for your time in advance!

    opened by annaklyueva 4
  • Select Speakers for Zero Shot TTS

    Select Speakers for Zero Shot TTS

    Hi ,

    Firstly great work on the project with time trying to understand the repo with more clarity. Wanted to know how can I select different speakers for different sections of text .

    Thanks in advance.

    opened by dipanjannC 4
  • From which version does coqui TTS starts supporting voice conversions and cloning?

    From which version does coqui TTS starts supporting voice conversions and cloning?

    Hi @Edresson, I am fairly new into the feild so please forgive for naive question. I am trying to use voice cloning feature. I trained a model on coqui-ai version 0.6 and in that installed environment. And I am using the command below to get the cloning done but it gives error that tts command does not expect "reference_wav" tts --model_path trained_model/best_model.pth.tar --config_path trained_model/config.json --speaker_idx "icici" --out_path output.wav --reference_wav target_content/asura_10secs.wav which might be because it did not support voice conversion then. Can you please confirm? Also, the model trained on version 0.6 doesn't run with latest version and ends up in dimension mismatch error which I am assuming due to model structure change probably. Please shed some light on this, It'll be really helpful.

    opened by tieincred 3
  • finetune VC on my voice

    finetune VC on my voice

    I would like to finetune yourTTS voice conversion on my own voice, and compare it to the zero-shot model. Could you provide the finetuning procedure for VC?

    opened by odeliazavlianovSC 3
  • Exp 1. YourTTS-EN(VCTK) + SCL(speaker encoder layers are not initialized )

    Exp 1. YourTTS-EN(VCTK) + SCL(speaker encoder layers are not initialized )

    I tried to run an experiment similar to Exp 1. YourTTS-EN(VCTK) + SCL initializing use_speaker_encoder_as_loss=true, speaker_encoder_loss_alpha=9.0, speaker_encoder_config_path and speaker_encoder_model_path(downloaded them from your google disk

    So my config file is almost identical to the one you have for the experiment(I don't have fine_tuning_mode=0, but I checked and 0 means disabled, so it shouldn't affect anything. Also use_speaker_embedding=false, otherwise it complains that vectors are initialized)

    My problem is when I print out model weights keys of your model and mine I have speaker encoder layers missing. They are not initialized for some reason. Unfortunately, I don't have any ideas why this could be happening :( Could you maybe point out a direction and what could I check?

      "use_sdp": true,
        "noise_scale": 1.0,
        "inference_noise_scale": 0.667,
        "length_scale": 1,
        "noise_scale_dp": 1.0,
        "inference_noise_scale_dp": 0.8,
        "max_inference_len": null,
        "init_discriminator": true,
        "use_spectral_norm_disriminator": false,
        "use_speaker_embedding": true,
        "num_speakers": 97,
        "speakers_file": null,
        "d_vector_file": "../speaker_embeddings/new-SE/VCTK+TTS-PT+MAILABS-FR/speakers.json",
        "speaker_embedding_channels": 512,
        "use_d_vector_file": true,
        "d_vector_dim": 512,
        "detach_dp_input": true,
        "use_language_embedding": false,
        "embedded_language_dim": 4,
        "num_languages": 0,
        "use_speaker_encoder_as_loss": true,
        "speaker_encoder_config_path": "../checkpoints/Speaker_Encoder/Resnet-original-paper/config.json",
        "speaker_encoder_model_path": "../checkpoints/Speaker_Encoder/Resnet-original-paper/converted_checkpoint.pth.tar",
        "fine_tuning_mode": 0,
        "freeze_encoder": false,
        "freeze_DP": false,
        "freeze_PE": false,
        "freeze_flow_decoder": false,
        "freeze_waveform_decoder": false
    
    opened by stalevna 3
  • Zeroshot TTS notebook no longer working

    Zeroshot TTS notebook no longer working

    Hi @Edresson @WeberJulian

    the demo notebook is no longer working with the current TTS master repo.

    I'm having hard time to execute things.

    Do you intend to adjust ? thanks

    opened by vince62s 3
Owner
Edresson Casanova
Computer Science PhD Student
Edresson Casanova
EZ graph is an easy to use AI solution that allows you to make and train your neural networks without a single line of code.

EZ-Graph EZ Graph is a GUI that allows users to make and train neural networks without writing a single line of code. Requirements python 3 pandas num

1 Jul 03, 2022
Power Core Simulator!

Power Core Simulator Power Core Simulator is a simulator based off the Roblox game "Pinewood Builders Computer Core". In this simulator, you can choos

BananaJeans 1 Nov 13, 2021
A Simple and Versatile Framework for Object Detection and Instance Recognition

SimpleDet - A Simple and Versatile Framework for Object Detection and Instance Recognition Major Features FP16 training for memory saving and up to 2.

TuSimple 3k Dec 12, 2022
Gesture-Volume-Control - This Python program can adjust the system's volume by using hand gestures

Gesture-Volume-Control This Python program can adjust the system's volume by usi

VatsalAryanBhatanagar 1 Dec 30, 2021
This dlib-based facial login system

Facial-Login-System This dlib-based facial login system is a technology capable of matching a human face from a digital webcam frame capture against a

Mushahid Ali 3 Apr 23, 2022
Code for "Finding Regions of Heterogeneity in Decision-Making via Expected Conditional Covariance" at NeurIPS 2021

Finding Regions of Heterogeneity in Decision-Making via Expected Conditional Covariance Justin Lim, Christina X Ji, Michael Oberst, Saul Blecker, Leor

Sontag Lab 3 Feb 03, 2022
Exponential Graph is Provably Efficient for Decentralized Deep Training

Exponential Graph is Provably Efficient for Decentralized Deep Training This code repository is for the paper Exponential Graph is Provably Efficient

3 Apr 20, 2022
Do you like Quick, Draw? Well what if you could train/predict doodles drawn inside Streamlit? Also draws lines, circles and boxes over background images for annotation.

Streamlit - Drawable Canvas Streamlit component which provides a sketching canvas using Fabric.js. Features Draw freely, lines, circles, boxes and pol

Fanilo Andrianasolo 325 Dec 28, 2022
DNA sequence classification by Deep Neural Network

DNA sequence classification by Deep Neural Network: Project Overview worked on the DNA sequence classification problem where the input is the DNA sequ

Mohammed Jawwadul Islam Fida 0 Aug 02, 2022
TuckER: Tensor Factorization for Knowledge Graph Completion

TuckER: Tensor Factorization for Knowledge Graph Completion This codebase contains PyTorch implementation of the paper: TuckER: Tensor Factorization f

Ivana Balazevic 296 Dec 06, 2022
QSYM: A Practical Concolic Execution Engine Tailored for Hybrid Fuzzing

QSYM: A Practical Concolic Execution Engine Tailored for Hybrid Fuzzing Environment Tested on Ubuntu 14.04 64bit and 16.04 64bit Installation # disabl

gts3.org (<a href=[email protected])"> 581 Dec 30, 2022
Easy way to add GoogleMaps to Flask applications. maintainer: @getcake

Flask Google Maps Easy to use Google Maps in your Flask application requires Jinja Flask A google api key get here Contribute To contribute with the p

Flask Extensions 611 Dec 05, 2022
Official implementation for "Low-light Image Enhancement via Breaking Down the Darkness"

Low-light Image Enhancement via Breaking Down the Darkness by Qiming Hu, Xiaojie Guo. 1. Dependencies Python3 PyTorch=1.0 OpenCV-Python, TensorboardX

Qiming Hu 30 Jan 01, 2023
RAMA: Rapid algorithm for multicut problem

RAMA: Rapid algorithm for multicut problem Solves multicut (correlation clustering) problems orders of magnitude faster than CPU based solvers without

Paul Swoboda 60 Dec 13, 2022
Code for the Paper "Diffusion Models for Handwriting Generation"

Code for the Paper "Diffusion Models for Handwriting Generation"

62 Dec 21, 2022
You Only Look Once for Panopitic Driving Perception

You Only 👀 Once for Panoptic 🚗 Perception You Only Look at Once for Panoptic driving Perception by Dong Wu, Manwen Liao, Weitian Zhang, Xinggang Wan

Hust Visual Learning Team 1.4k Jan 04, 2023
Pre-trained models for a Cascaded-FCN in caffe and tensorflow that segments

Cascaded-FCN This repository contains the pre-trained models for a Cascaded-FCN in caffe and tensorflow that segments the liver and its lesions out of

300 Nov 22, 2022
darija <-> english dictionary

darija-dictionary Having advanced IT solutions that are well adapted to the Moroccan context passes inevitably through understanding Moroccan dialect.

DODa 102 Jan 01, 2023
使用yolov5训练自己数据集(详细过程)并通过flask部署

使用yolov5训练自己的数据集(详细过程)并通过flask部署 依赖库 torch torchvision numpy opencv-python lxml tqdm flask pillow tensorboard matplotlib pycocotools Windows,请使用 pycoc

HB.com 19 Dec 28, 2022
ADSPM: Attribute-Driven Spontaneous Motion in Unpaired Image Translation

ADSPM: Attribute-Driven Spontaneous Motion in Unpaired Image Translation This repository provides a PyTorch implementation of ADSPM. Requirements Pyth

24 Jul 24, 2022