Kaggle Ultrasound Nerve Segmentation competition [Keras]

Overview

Ultrasound nerve segmentation using Keras (1.0.7)

Kaggle Ultrasound Nerve Segmentation competition [Keras]

#Install (Ubuntu {14,16}, GPU)

cuDNN required.

###Theano

In ~/.theanorc

[global]
device = gpu0
[dnn]
enabled = True

###Keras

  • sudo apt-get install libhdf5-dev
  • sudo pip install h5py
  • sudo pip install pydot
  • sudo pip install nose_parameterized
  • sudo pip install keras

In ~/.keras/keras.json (it's very important, the project was running on theano backend, and some issues are possible in case of TensorFlow)

{
    "image_dim_ordering": "th",
    "epsilon": 1e-07,
    "floatx": "float32",
    "backend": "theano"
}

###Python deps

  • sudo apt-get install python-opencv
  • sudo apt-get install python-sklearn

#Prepare

Place train and test data into '../train' and '../test' folders accordingly.

mkdir np_data
python data.py

#Training

Single model training.

python train.py

Results will be generatated in "res/" folder. res/unet.hdf5 - best model

Generate submission:

python submission.py

Generate predection with a model in res/unet.hdf5

python current.py

#Model

Motivation's explained in my internal pres (slides: http://www.slideshare.net/Eduardyantov/ultrasound-segmentation-kaggle-review)

I used U-net like architecture (http://arxiv.org/abs/1505.04597). Main differences:

  • inception blocks instead of VGG like
  • Conv with stride instead of MaxPooling
  • Dropout, p=0.5
  • skip connections from encoder to decoder layers with residual blocks
  • BatchNorm everywhere
  • 2 heads training: auxiliary branch for scoring nerve presence (in the middle of the network), one branch for segmentation
  • ELU activation
  • sigmoid activation in output
  • Adam optimizer, without weight regularization in layers
  • Dice coeff loss, average per batch, without smoothing
  • output layers - sigmoid activation
  • batch_size=64,128 (for GeForce 1080 and Titan X respectively)

Augmentation:

  • flip x,y
  • random zoom
  • random channel shift
  • elastic transormation didn't help in this configuration

Augmentation generator (generate augmented data on the fly for each epoch) didn't improve the score. For prediction augmented images were used.

Validation:

For some reason validation split by patient (which is proper in this competition) didn't work for me, probably due to bug in the code. So I used random split.

Final prediction uses probability of a nerve presence: p_nerve = (p_score + p_segment)/2, where p_segment based on number of output pixels in the mask.

#Results and technical aspects

  • On GPU Titan X an epoch took about 6 minutes. Training early stops at 15-30 epochs.
  • For batch_size=64 6Gb GPU memory is required.
  • Best single model achieved 0.694 LB score.
  • An ensemble of 6 different k-fold ensembles (k=5,6,8) scored 0.70399

#Credits This code was originally based on https://github.com/jocicmarko/ultrasound-nerve-segmentation/

A big endian Gentoo port developed on a Pine64.org RockPro64

Gentoo-aarch64_be A big endian Gentoo port developed on a Pine64.org RockPro64 The endian wars are over... little endian won. As a result, it is incre

Rory Bolt 6 Dec 07, 2022
Rot-Pro: Modeling Transitivity by Projection in Knowledge Graph Embedding

Rot-Pro : Modeling Transitivity by Projection in Knowledge Graph Embedding This repository contains the source code for the Rot-Pro model, presented a

Tewi 9 Sep 28, 2022
Implement of homography net by pytorch

HomographyNet Implement of homography net by pytorch Brief Introduction This project is based on the work Homography-Net: @article{detone2016deep, t

ronghao_CN 4 May 19, 2022
Flexible-Modal Face Anti-Spoofing: A Benchmark

Flexible-Modal FAS This is the official repository of "Flexible-Modal Face Anti-

Zitong Yu 22 Nov 10, 2022
Estimation of human density in a closed space using deep learning.

Siemens HOLLZOF challenge - Human Density Estimation Add project description here. Installing Dependencies: Install Python3 either system-wide, user-w

3 Aug 08, 2021
[NeurIPS'21] "AugMax: Adversarial Composition of Random Augmentations for Robust Training" by Haotao Wang, Chaowei Xiao, Jean Kossaifi, Zhiding Yu, Animashree Anandkumar, and Zhangyang Wang.

[NeurIPS'21] "AugMax: Adversarial Composition of Random Augmentations for Robust Training" by Haotao Wang, Chaowei Xiao, Jean Kossaifi, Zhiding Yu, Animashree Anandkumar, and Zhangyang Wang.

VITA 112 Nov 07, 2022
Repository for "Exploring Sparsity in Image Super-Resolution for Efficient Inference", CVPR 2021

SMSR Reposity for "Exploring Sparsity in Image Super-Resolution for Efficient Inference" [arXiv] Highlights Locate and skip redundant computation in S

Longguang Wang 225 Dec 26, 2022
AsymmetricGAN - Dual Generator Generative Adversarial Networks for Multi-Domain Image-to-Image Translation

AsymmetricGAN for Image-to-Image Translation AsymmetricGAN Framework for Multi-Domain Image-to-Image Translation AsymmetricGAN Framework for Hand Gest

Hao Tang 42 Jan 15, 2022
Export CenterPoint PonintPillars ONNX Model For TensorRT

CenterPoint-PonintPillars Pytroch model convert to ONNX and TensorRT Welcome to CenterPoint! This project is fork from tianweiy/CenterPoint. I impleme

CarkusL 149 Dec 13, 2022
A PyTorch implementation of "Semi-Supervised Graph Classification: A Hierarchical Graph Perspective" (WWW 2019)

SEAL ⠀⠀⠀ A PyTorch implementation of Semi-Supervised Graph Classification: A Hierarchical Graph Perspective (WWW 2019) Abstract Node classification an

Benedek Rozemberczki 202 Dec 27, 2022
Pytorch implementation for "Distribution-Balanced Loss for Multi-Label Classification in Long-Tailed Datasets" (ECCV 2020 Spotlight)

Distribution-Balanced Loss [Paper] The implementation of our paper Distribution-Balanced Loss for Multi-Label Classification in Long-Tailed Datasets (

Tong WU 304 Dec 22, 2022
A few stylization coreML models that I've trained with CreateML

CoreML-StyleTransfer A few stylization coreML models that I've trained with CreateML You can open and use the .mlmodel files in the "models" folder in

Doron Adler 8 Aug 18, 2022
The official implementation of paper Siamese Transformer Pyramid Networks for Real-Time UAV Tracking, accepted by WACV22

SiamTPN Introduction This is the official implementation of the SiamTPN (WACV2022). The tracker intergrates pyramid feature network and transformer in

Robotics and Intelligent Systems Control @ NYUAD 29 Jan 08, 2023
traiNNer is an open source image and video restoration (super-resolution, denoising, deblurring and others) and image to image translation toolbox based on PyTorch.

traiNNer traiNNer is an open source image and video restoration (super-resolution, denoising, deblurring and others) and image to image translation to

202 Jan 04, 2023
ChebLieNet, a spectral graph neural network turned equivariant by Riemannian geometry on Lie groups.

ChebLieNet: Invariant spectral graph NNs turned equivariant by Riemannian geometry on Lie groups Hugo Aguettaz, Erik J. Bekkers, Michaël Defferrard We

haguettaz 12 Dec 10, 2022
Fully Adaptive Bayesian Algorithm for Data Analysis (FABADA) is a new approach of noise reduction methods. In this repository is shown the package developed for this new method based on \citepaper.

Fully Adaptive Bayesian Algorithm for Data Analysis FABADA FABADA is a novel non-parametric noise reduction technique which arise from the point of vi

18 Oct 20, 2022
An official repository for Paper "Uformer: A General U-Shaped Transformer for Image Restoration".

Uformer: A General U-Shaped Transformer for Image Restoration Zhendong Wang, Xiaodong Cun, Jianmin Bao and Jianzhuang Liu Paper: https://arxiv.org/abs

Zhendong Wang 497 Dec 22, 2022
PyTorch Code for NeurIPS 2021 paper Anti-Backdoor Learning: Training Clean Models on Poisoned Data.

Anti-Backdoor Learning PyTorch Code for NeurIPS 2021 paper Anti-Backdoor Learning: Training Clean Models on Poisoned Data. Check the unlearning effect

Yige-Li 51 Dec 07, 2022
Deep Learning for Computer Vision final project

Deep Learning for Computer Vision final project

grassking100 1 Nov 30, 2021
NeuralCompression is a Python repository dedicated to research of neural networks that compress data

NeuralCompression is a Python repository dedicated to research of neural networks that compress data. The repository includes tools such as JAX-based entropy coders, image compression models, video c

Facebook Research 297 Jan 06, 2023