Fully Adaptive Bayesian Algorithm for Data Analysis (FABADA) is a new approach of noise reduction methods. In this repository is shown the package developed for this new method based on \citepaper.

Overview

Contributors Forks Stargazers Issues GNU License LinkedIn

Fully Adaptive Bayesian Algorithm for Data Analysis

FABADA

FABADA is a novel non-parametric noise reduction technique which arise from the point of view of Bayesian inference that iteratively evaluates possible smoothed models of the data, obtaining an estimation of the underlying signal that is statistically compatible with the noisy measurements. Iterations stop based on the evidence $E$ and the $\chi^2$ statistic of the last smooth model, and we compute the expected value of the signal as a weighted average of the smooth models. You can find the entire paper describing the new method in (link will be available soon).
Explore the docs »

View Demo · Report Bug · Request Feature

Table of Contents
  1. About The Method
  2. Getting Started
  3. Usage
  4. Results
  5. Contributing
  6. License
  7. Contact
  8. Cite

About The Method

This automatic method is focused in astronomical data, such as images (2D) or spectra (1D). Although, this doesn't mean it can be treat like a general noise reduction algorithm and can be use in any kind of two and one-dimensional data reproducing reliable results. The only requisite of the input data is an estimation of its variance.

(back to top)

Getting Started

We try to make the usage of FABADA as simple as possible. For that purpose, we have create a PyPI and Conda package to install FABADA in its latest version.

Prerequisites

The first requirement is to have a version of Python greater than 3.5. Although PyPI install the prerequisites itself, FABADA has two dependecies.

Installation

To install fabada we can, use the Python Package Index (PyPI) or Conda.

Using pip

  pip install fabada

we are currently working on uploading the package to the Conda system.

(back to top)

Usage

Along with the package two examples are given.

  • fabada_demo_image.py

In here we show how to use fabada for an astronomical grey image (two dimensional) First of all we have to import our library previously install and some dependecies

    from fabada import fabada
    import numpy as np
    from PIL import Image

Then we read the bubble image borrowed from the Hubble Space Telescope gallery. In our case we use the Pillow library for that. We also add some random Gaussian white noise using numpy.random.

    # IMPORTING IMAGE
    y = np.array(Image.open("bubble.png").convert('L'))

    # ADDING RANDOM GAUSSIAN NOISE
    np.random.seed(12431)
    sig      = 15             # Standard deviation of noise
    noise    = np.random.normal(0, sig ,y.shape)
    z        = y + noise
    variance = sig**2

Once the noisy image is generated we can apply fabada to produce an estimation of the underlying image, which we only have to call fabada and give it the variance of the noisy image

    y_recover = fabada(z,variance)

And its done 😉

As easy as one line of code.

The results obtained running this example would be:

Image Results

The left, middle and right panel corresponds to the true signal, the noisy meassurents and the estimation of fabada respectively. There is also shown the Peak Signal to Noise Ratio (PSNR) in dB and the Structural Similarity Index Measure (SSIM) at the bottom of the middle and right panel (PSNR/SSIM).

  • fabada_demo_spectra.py

In here we show how to use fabada for an astronomical spectrum (one dimensional), basically is the same as the example above since fabada is the same for one and two-dimensional data. First of all, we have to import our library previously install and some dependecies

    from fabada import fabada
    import pandas as pd
    import numpy as np

Then we read the interacting galaxy pair Arp 256 spectra, taken from the ASTROLIB PYSYNPHOT package which is store in arp256.csv. Again we add some random Gaussian white noise

    # IMPORTING SPECTRUM
    y = np.array(pd.read_csv('arp256.csv').flux)
    y = (y/y.max())*255  # Normalize to 255

    # ADDING RANDOM GAUSSIAN NOISE
    np.random.seed(12431)
    sig      = 10             # Standard deviation of noise
    noise    = np.random.normal(0, sig ,y.shape)
    z        = y + noise
    variance = sig**2

Once the noisy image is generated we can, again, apply fabada to produce an estimation of the underlying spectrum, which we only have to call fabada and give it the variance of the noisy image

    y_recover = fabada(z,variance)

And done again 😉

Which is exactly the same as for two dimensional data.

The results obtained running this example would be:

Spectra Results

The red, grey and black line represents the true signal, the noisy meassurents and the estimation of fabada respectively. There is also shown the Peak Signal to Noise Ratio (PSNR) in dB and the Structural Similarity Index Measure (SSIM) in the legend of the figure (PSNR/SSIM).

(back to top)

Results

All the results of the paper of this algorithm can be found in the folder results along with a jupyter notebook that allows to explore all of them through an interactive interface. You can run the jupyter notebook through Google Colab in this link --> Explore the results.

(back to top)

Contributing

Contributions are what make the open source community such an amazing place to learn, inspire, and create. Any contributions you make are greatly appreciated.

If you have a suggestion that would make this better, please fork the repo and create a pull request. You can also simply open an issue with the tag "enhancement". Don't forget to give the project a star! Thanks again!

  1. Fork the Project
  2. Create your Feature Branch (git checkout -b feature/AmazingFeature)
  3. Commit your Changes (git commit -m 'Add some AmazingFeature')
  4. Push to the Branch (git push origin feature/AmazingFeature)
  5. Open a Pull Request

(back to top)

License

Distributed under the GNU General Public License. See LICENSE.txt for more information.

(back to top)

Contact

Pablo M Sánchez Alarcón - [email protected]

Yago Ascasibar Sequeiros - [email protected]

Project Link: https://github.com/PabloMSanAla/fabada

(back to top)

Cite

Thank you for using FABADA.

Citations and acknowledgement are vital for the continued work on this kind of algorithms.

Please cite the following record if you used FABADA in any of your publications.

@ARTICLE{2022arXiv220105145S,
author = {{Sanchez-Alarcon}, Pablo M and {Ascasibar Sequeiros}, Yago},
title = "{Fully Adaptive Bayesian Algorithm for Data Analysis, FABADA}",
journal = {arXiv e-prints},
keywords = {Astrophysics - Instrumentation and Methods for Astrophysics, Astrophysics - Astrophysics of Galaxies, Astrophysics - Solar and Stellar Astrophysics, Computer Science - Computer Vision and Pattern Recognition, Physics - Data Analysis, Statistics and Probability},
year = 2022,
month = jan,
eid = {arXiv:2201.05145},
pages = {arXiv:2201.05145},
archivePrefix = {arXiv},
eprint = {2201.05145},
primaryClass = {astro-ph.IM},
adsurl = {https://ui.adsabs.harvard.edu/abs/2022arXiv220105145S}
}

Sanchez-Alarcon, P. M. and Ascasibar Sequeiros, Y., “Fully Adaptive Bayesian Algorithm for Data Analysis, FABADA”, arXiv e-prints, 2022.

https://arxiv.org/abs/2201.05145

(back to top)

Readme file taken from Best README Template.

You might also like...
pyhsmm - library for approximate unsupervised inference in Bayesian Hidden Markov Models (HMMs) and explicit-duration Hidden semi-Markov Models (HSMMs), focusing on the Bayesian Nonparametric extensions, the HDP-HMM and HDP-HSMM, mostly with weak-limit approximations.
Bayesian-Torch is a library of neural network layers and utilities extending the core of PyTorch to enable the user to perform stochastic variational inference in Bayesian deep neural networks

Bayesian-Torch is a library of neural network layers and utilities extending the core of PyTorch to enable the user to perform stochastic variational inference in Bayesian deep neural networks. Bayesian-Torch is designed to be flexible and seamless in extending a deterministic deep neural network architecture to corresponding Bayesian form by simply replacing the deterministic layers with Bayesian layers.

Hierarchical-Bayesian-Defense - Towards Adversarial Robustness of Bayesian Neural Network through Hierarchical Variational Inference (Openreview) How the Deep Q-learning method works and discuss the new ideas that makes the algorithm work
How the Deep Q-learning method works and discuss the new ideas that makes the algorithm work

Deep Q-Learning Recommend papers The first step is to read and understand the method that you will implement. It was first introduced in a 2013 paper

PassAPI is a password generator in hash format and fully developed in Python, with the aim of teaching how to handle and build
PassAPI is a password generator in hash format and fully developed in Python, with the aim of teaching how to handle and build

simple, elegant and safe Introduction PassAPI is a password generator in hash format and fully developed in Python, with the aim of teaching how to ha

Implementation of temporal pooling methods studied in [ICIP'20] A Comparative Evaluation Of Temporal Pooling Methods For Blind Video Quality Assessment

Implementation of temporal pooling methods studied in [ICIP'20] A Comparative Evaluation Of Temporal Pooling Methods For Blind Video Quality Assessment

A variational Bayesian method for similarity learning in non-rigid image registration (CVPR 2022)
A variational Bayesian method for similarity learning in non-rigid image registration (CVPR 2022)

A variational Bayesian method for similarity learning in non-rigid image registration We provide the source code and the trained models used in the re

We evaluate our method on different datasets (including ShapeNet, CUB-200-2011, and Pascal3D+) and achieve state-of-the-art results, outperforming all the other supervised and unsupervised methods and 3D representations, all in terms of performance, accuracy, and training time.
Comments
  • chi2pdf

    chi2pdf

    https://github.com/PabloMSanAla/fabada/blob/44a0ae025d21a11235f6591f8fcacbf7c0cec1ec/fabada/init.py#L129

    The chi2pdf estimation is dependent on df. df, in the example demos, is set to data.size.

    In the case of fabada_demo_spectrum, data.size is 1430 samples.

    per wolfram alpha, the gamma function value of 715 is 1x10^1729, which is well out of the calculation range of any desktop computer.

    chi2_data = np.sum <-- a float chi2_pdf = stats.chi2.pdf(chi2_data, df=data.size)

    https://lost-contact.mit.edu/afs/inf.ed.ac.uk/group/teaching/matlab-help/R2014a/stats/chi2pdf.html

    chi2_pdf = (chi2data** (N - 2) / 2) * numpy.exp(-chi2sum / 2)
    / ((2 ** (N / 2)) * math.gamma(N / 2))

    As a result, this function is going to fail without any question, and numpy /python will happily ignore the NaN value which is always returned. this then turns chi2_pdf_derivative chi2_pdf_previous chi2_pdf_snd_derivative chi2_pdf_derivative_previous into NaN values as well.

    opened by falseywinchnet 0
  • data variance fixing unreachable

    data variance fixing unreachable

    https://github.com/PabloMSanAla/fabada/blob/master/fabada/init.py#L83 this line of code is unreachable: since all the nan's are already set to 0 previously

    opened by falseywinchnet 0
  • python equivalance

    python equivalance

    https://github.com/PabloMSanAla/fabada/blob/44a0ae025d21a11235f6591f8fcacbf7c0cec1ec/fabada/init.py#L115 This sets a reference, and afterwards, any update to the array being referenced also modifies the array referencing it.

    opened by falseywinchnet 2
Releases(v0.2)
Reproduce ResNet-v2(Identity Mappings in Deep Residual Networks) with MXNet

Reproduce ResNet-v2 using MXNet Requirements Install MXNet on a machine with CUDA GPU, and it's better also installed with cuDNN v5 Please fix the ran

Wei Wu 531 Dec 04, 2022
Image-popularity-score - A novel deep regression method for image scoring.

Image-popularity-score - A novel deep regression method for image scoring.

Shoaib ahmed 1 Dec 26, 2021
Repository containing the PhD Thesis "Formal Verification of Deep Reinforcement Learning Agents"

Getting Started This repository contains the code used for the following publications: Probabilistic Guarantees for Safe Deep Reinforcement Learning (

Edoardo Bacci 5 Aug 31, 2022
SpeechNAS Better Trade off between Latency and Accuracy for Large Scale Speaker Verification

SpeechNAS Better Trade off between Latency and Accuracy for Large Scale Speaker Verification

Wentao Zhu 24 May 20, 2022
Pytorch based library to rank predicted bounding boxes using text/image user's prompts.

pytorch_clip_bbox: Implementation of the CLIP guided bbox ranking for Object Detection. Pytorch based library to rank predicted bounding boxes using t

Sergei Belousov 50 Nov 27, 2022
Data & Code for ACCENTOR Adding Chit-Chat to Enhance Task-Oriented Dialogues

ACCENTOR: Adding Chit-Chat to Enhance Task-Oriented Dialogues Overview ACCENTOR consists of the human-annotated chit-chat additions to the 23.8K dialo

Facebook Research 69 Dec 29, 2022
This repository contains PyTorch code for Robust Vision Transformers.

This repository contains PyTorch code for Robust Vision Transformers.

117 Dec 07, 2022
TensorFlow Metal Backend on Apple Silicon Experiments (just for fun)

tf-metal-experiments TensorFlow Metal Backend on Apple Silicon Experiments (just for fun) Setup This is tested on M1 series Apple Silicon SOC only. Te

Timothy Liu 161 Jan 03, 2023
Bringing sanity to world of messed-up data

Sanitize sanitize is a Python module for making sure various things (e.g. HTML) are safe to use. It was originally written by Mark Pilgrim and is dist

Alireza Savand 63 Oct 26, 2021
🗣️ Microsoft Edge TTS for Home Assistant, no need for app_key

Microsoft Edge TTS for Home Assistant This component is based on the TTS service of Microsoft Edge browser, no need to apply for app_key. Install Down

152 Dec 31, 2022
LaneAF: Robust Multi-Lane Detection with Affinity Fields

LaneAF: Robust Multi-Lane Detection with Affinity Fields This repository contains Pytorch code for training and testing LaneAF lane detection models i

155 Dec 17, 2022
Practical Blind Denoising via Swin-Conv-UNet and Data Synthesis

Practical Blind Denoising via Swin-Conv-UNet and Data Synthesis [Paper] [Online Demo] The following results are obtained by our SCUNet with purely syn

Kai Zhang 312 Jan 07, 2023
SpecAugmentPyTorch - A Pytorch (support batch and channel) implementation of GoogleBrain's SpecAugment: A Simple Data Augmentation Method for Automatic Speech Recognition

SpecAugment An implementation of SpecAugment for Pytorch How to use Install pytorch, version=1.9.0 (new feature (torch.Tensor.take_along_dim) is used

IMLHF 3 Oct 11, 2022
ShuttleNet: Position-aware Fusion of Rally Progress and Player Styles for Stroke Forecasting in Badminton (AAAI 2022)

ShuttleNet: Position-aware Rally Progress and Player Styles Fusion for Stroke Forecasting in Badminton (AAAI 2022) Official code of the paper ShuttleN

Wei-Yao Wang 11 Nov 30, 2022
Plugin for Gaffer providing direct acess to asset from PolyHaven.com. Only HDRIs at the moment, Cycles and Arnold supported

GafferHaven Plugin for Gaffer providing direct acess to asset from PolyHaven.com. Only HDRIs are supported at the moment, in Cycles and Arnold lights.

Jakub Vondra 6 Jan 26, 2022
Joint Versus Independent Multiview Hashing for Cross-View Retrieval[J] (IEEE TCYB 2021, PyTorch Code)

Thanks to the low storage cost and high query speed, cross-view hashing (CVH) has been successfully used for similarity search in multimedia retrieval. However, most existing CVH methods use all view

4 Nov 19, 2022
Python binding for Khiva library.

Khiva-Python Build Documentation Build Linux and Mac OS Build Windows Code Coverage README This is the Khiva Python binding, it allows the usage of Kh

Shapelets 46 Oct 16, 2022
Pytorch Implementation of Adversarial Deep Network Embedding for Cross-Network Node Classification

Pytorch Implementation of Adversarial Deep Network Embedding for Cross-Network Node Classification (ACDNE) This is a pytorch implementation of the Adv

陈志豪 8 Oct 13, 2022
Unconstrained Text Detection with Box Supervisionand Dynamic Self-Training

SelfText Beyond Polygon: Unconstrained Text Detection with Box Supervisionand Dynamic Self-Training Introduction This is a PyTorch implementation of "

weijiawu 34 Nov 09, 2022