Python binding for Khiva library.

Overview

Khiva-Python

License: MPL 2.0 Gitter chat

Build Documentation Build Linux and Mac OS Build Windows Code Coverage
Documentation Status Build Status Build status Coverage Status

README

This is the Khiva Python binding, it allows the usage of Khiva library from Python.

License

This project is licensed under MPL-v2.

Quick Summary

This Python binding called 'khiva' provides all the functionalities of the KHIVA library for time series analytics.

Set up

In order to use this binding, you need to install Khiva library.

Prerequisites

Note: By now, only 64-bit Python versions are supported.

Note Windows' users: Search your 64-bits version here

Install latest version

Install latest stable version of Khiva library. Follow the steps in the "Installation" section of the Khiva repository

To install the Khiva Python binding, we just need to execute the following command:

python setup.py install

Install any release

Install the prerequisites listed in the "Installation" section of the Khiva library repository. Download and install your selected Khiva release from Khiva repository.

Install the Khiva python binding compatible with the Khiva library installed previously. Follow the steps to install the Khiva python binding explained in pypi.

Executing the tests:

All tests can be executed separately, please find them in /tests/unit_tests.

Documentation

This Khiva Python binding follows the standard way of writing documentation of Python by using Sphinx.

In order to generate the documentation (in html format), run the following command under the /docs folder:

make html

Contributing

The rules to contribute to this project are described here

Powered by Shapelets

Comments
  • Access violation

    Access violation

    Describe the bug I get a access violation whenever I use khiva python lib

    To Reproduce Run a simple program like:

    from khiva.library import *
    set_backend(KHIVABackend.KHIVA_BACKEND_OPENCL)
    set_device(0)
    
    from khiva.array import *
    a = Array([1, 2, 3, 4, 5, 6, 7, 8])
    a.display()
    

    Expected behavior Application should run without exceptions

    Screenshots

    (base) C:\Progetti\Lab\Khiva\MyPythonSamples\HelloKhiva>python main.py
    array
    [8 1 1 1]
        1.0000
        2.0000
        3.0000
        4.0000
        5.0000
        6.0000
        7.0000
        8.0000
    
    Traceback (most recent call last):
      File "main.py", line 7, in <module>
        a.display()
      File "C:\Anaconda3\lib\site-packages\khiva\array.py", line 323, in display
        KhivaLibrary().c_khiva_library.display(ctypes.pointer(self.arr_reference))
    OSError: exception: access violation writing 0x00007FFE94CB180A
    

    Environment information:

    • OS: Windows 10
    • Version 0.3.0
    opened by maiorfi 6
  • V0.5.0

    V0.5.0

    Make sure you have checked all steps below.

    Description

    • [ ] Here are some details about my PR, including screenshots of any UI changes:

    Tests

    • [ ] My PR adds the following unit tests OR does not need testing for this extremely good reason:

    Commits

    • [ ] My commits have been squashed if they address the same issue. In addition, my commits follow the guidelines from "How to write a good git commit message":
      1. Subject is separated from body by a blank line
      2. Subject is limited to 50 characters
      3. Subject does not end with a period
      4. Subject uses the imperative mood ("add", not "adding")
      5. Body wraps at 72 characters
      6. Body explains "what" and "why", not "how"

    License

    Documentation

    • [ ] In case of new functionality, my PR adds documentation that describes how to use it.
    opened by raulbocanegra 1
  • V0.5.0

    V0.5.0

    Make sure you have checked all steps below.

    Description

    • [ ] Here are some details about my PR, including screenshots of any UI changes:

    Tests

    • [ ] My PR adds the following unit tests OR does not need testing for this extremely good reason:

    Commits

    • [ ] My commits have been squashed if they address the same issue. In addition, my commits follow the guidelines from "How to write a good git commit message":
      1. Subject is separated from body by a blank line
      2. Subject is limited to 50 characters
      3. Subject does not end with a period
      4. Subject uses the imperative mood ("add", not "adding")
      5. Body wraps at 72 characters
      6. Body explains "what" and "why", not "how"

    License

    Documentation

    • [ ] In case of new functionality, my PR adds documentation that describes how to use it.
    opened by raulbocanegra 1
  • Khiva Python Bindings not passing all unit tests

    Khiva Python Bindings not passing all unit tests

    Describe the bug Khiva Python Bindings not passing all unit tests. Problems include seg fault or is not able to find required library in khiva function call.

    To Reproduce Build khiva from source, install. Run install script to generate python bindings. Run unit tests from this repo.

    Expected behavior All tests should pass.

    Environment information: Ubuntu 18.04.4 LTS Python 3.6.9 Conan version 1.23.0 ArrayFire-v3.6.2

    Additional context I joined the Gitter, it may be easier to continue the conversation there. Saw no errors during installation of both khiva and the python bindings. Prerequisites were installed prior to installing khiva.

    opened by yuhongsun96 1
  • update setup.py

    update setup.py

    Make sure you have checked all steps below.

    Description

    • [ ] Here are some details about my PR, including screenshots of any UI changes:

    Tests

    • [ ] My PR adds the following unit tests OR does not need testing for this extremely good reason:

    Commits

    • [ ] My commits have been squashed if they address the same issue. In addition, my commits follow the guidelines from "How to write a good git commit message":
      1. Subject is separated from body by a blank line
      2. Subject is limited to 50 characters
      3. Subject does not end with a period
      4. Subject uses the imperative mood ("add", not "adding")
      5. Body wraps at 72 characters
      6. Body explains "what" and "why", not "how"

    License

    Documentation

    • [ ] In case of new functionality, my PR adds documentation that describes how to use it.
    opened by raulbocanegra 1
  • Feature/error handling

    Feature/error handling

    Make sure you have checked all steps below.

    Description

    • [ ] Here are some details about my PR, including screenshots of any UI changes:

    Tests

    • [ ] My PR adds the following unit tests OR does not need testing for this extremely good reason:

    Commits

    • [ ] My commits have been squashed if they address the same issue. In addition, my commits follow the guidelines from "How to write a good git commit message":
      1. Subject is separated from body by a blank line
      2. Subject is limited to 50 characters
      3. Subject does not end with a period
      4. Subject uses the imperative mood ("add", not "adding")
      5. Body wraps at 72 characters
      6. Body explains "what" and "why", not "how"

    License

    Documentation

    • [ ] In case of new functionality, my PR adds documentation that describes how to use it.
    opened by avilchess 1
  • Feature/scamp_getChains

    Feature/scamp_getChains

    • Add scamp algorithm
    • Add get_chains function

    Description

    • [ ] Here are some details about my PR, including screenshots of any UI changes:

    Tests

    • [ ] My PR adds the following unit tests OR does not need testing for this extremely good reason:

    Commits

    • [ ] My commits have been squashed if they address the same issue. In addition, my commits follow the guidelines from "How to write a good git commit message":
      1. Subject is separated from body by a blank line
      2. Subject is limited to 50 characters
      3. Subject does not end with a period
      4. Subject uses the imperative mood ("add", not "adding")
      5. Body wraps at 72 characters
      6. Body explains "what" and "why", not "how"

    License

    Documentation

    • [ ] In case of new functionality, my PR adds documentation that describes how to use it.
    opened by jrecuerda 1
  • Increase package version

    Increase package version

    Make sure you have checked all steps below.

    Description

    • [ ] Here are some details about my PR, including screenshots of any UI changes:

    Tests

    • [ ] My PR adds the following unit tests OR does not need testing for this extremely good reason:

    Commits

    • [ ] My commits have been squashed if they address the same issue. In addition, my commits follow the guidelines from "How to write a good git commit message":
      1. Subject is separated from body by a blank line
      2. Subject is limited to 50 characters
      3. Subject does not end with a period
      4. Subject uses the imperative mood ("add", not "adding")
      5. Body wraps at 72 characters
      6. Body explains "what" and "why", not "how"

    License

    Documentation

    • [ ] In case of new functionality, my PR adds documentation that describes how to use it.
    opened by jrecuerda 1
  • Add mass and findBestNOccurrences functions

    Add mass and findBestNOccurrences functions

    Make sure you have checked all steps below.

    Description

    • [ ] Here are some details about my PR, including screenshots of any UI changes:

    Tests

    • [ ] My PR adds the following unit tests OR does not need testing for this extremely good reason:

    Commits

    • [ ] My commits have been squashed if they address the same issue. In addition, my commits follow the guidelines from "How to write a good git commit message":
      1. Subject is separated from body by a blank line
      2. Subject is limited to 50 characters
      3. Subject does not end with a period
      4. Subject uses the imperative mood ("add", not "adding")
      5. Body wraps at 72 characters
      6. Body explains "what" and "why", not "how"

    License

    Documentation

    • [ ] In case of new functionality, my PR adds documentation that describes how to use it.
    opened by jrecuerda 1
  • Fix issue with numpy interop

    Fix issue with numpy interop

    Reading from an Array:

    • When an Array of real or complex numbers with more than two dimensions was benig converted to numpy this conversion didn't return an np.array with a proper shape.

    Creating an Array:

    • When an Array of real numbers with more than two dimensions was built. The shape in the device (arrayfire) was not correct.
    • For complex numbers it occurrs with more than one dimension.

    Make sure you have checked all steps below.

    Description

    • [ ] Here are some details about my PR, including screenshots of any UI changes:

    Tests

    • [ ] My PR adds the following unit tests OR does not need testing for this extremely good reason:

    Commits

    • [ ] My commits have been squashed if they address the same issue. In addition, my commits follow the guidelines from "How to write a good git commit message":
      1. Subject is separated from body by a blank line
      2. Subject is limited to 50 characters
      3. Subject does not end with a period
      4. Subject uses the imperative mood ("add", not "adding")
      5. Body wraps at 72 characters
      6. Body explains "what" and "why", not "how"

    License

    Documentation

    • [ ] In case of new functionality, my PR adds documentation that describes how to use it.
    opened by jrecuerda 1
  • Fix bug when doing get_data from an Array with one element.

    Fix bug when doing get_data from an Array with one element.

    This PR solves one issue when doing get_data().tolist() on a Khiva.Array with one element.

    Description

    • [ ] Here are some details about my PR, including screenshots of any UI changes:

    Tests

    • [ ] My PR adds the following unit tests OR does not need testing for this extremely good reason:

    Commits

    • [ ] My commits have been squashed if they address the same issue. In addition, my commits follow the guidelines from "How to write a good git commit message":
      1. Subject is separated from body by a blank line
      2. Subject is limited to 50 characters
      3. Subject does not end with a period
      4. Subject uses the imperative mood ("add", not "adding")
      5. Body wraps at 72 characters
      6. Body explains "what" and "why", not "how"

    License

    Documentation

    • [ ] In case of new functionality, my PR adds documentation that describes how to use it.
    opened by avilchess 1
  • Bump numpy from 1.18.1 to 1.22.0

    Bump numpy from 1.18.1 to 1.22.0

    Bumps numpy from 1.18.1 to 1.22.0.

    Release notes

    Sourced from numpy's releases.

    v1.22.0

    NumPy 1.22.0 Release Notes

    NumPy 1.22.0 is a big release featuring the work of 153 contributors spread over 609 pull requests. There have been many improvements, highlights are:

    • Annotations of the main namespace are essentially complete. Upstream is a moving target, so there will likely be further improvements, but the major work is done. This is probably the most user visible enhancement in this release.
    • A preliminary version of the proposed Array-API is provided. This is a step in creating a standard collection of functions that can be used across application such as CuPy and JAX.
    • NumPy now has a DLPack backend. DLPack provides a common interchange format for array (tensor) data.
    • New methods for quantile, percentile, and related functions. The new methods provide a complete set of the methods commonly found in the literature.
    • A new configurable allocator for use by downstream projects.

    These are in addition to the ongoing work to provide SIMD support for commonly used functions, improvements to F2PY, and better documentation.

    The Python versions supported in this release are 3.8-3.10, Python 3.7 has been dropped. Note that 32 bit wheels are only provided for Python 3.8 and 3.9 on Windows, all other wheels are 64 bits on account of Ubuntu, Fedora, and other Linux distributions dropping 32 bit support. All 64 bit wheels are also linked with 64 bit integer OpenBLAS, which should fix the occasional problems encountered by folks using truly huge arrays.

    Expired deprecations

    Deprecated numeric style dtype strings have been removed

    Using the strings "Bytes0", "Datetime64", "Str0", "Uint32", and "Uint64" as a dtype will now raise a TypeError.

    (gh-19539)

    Expired deprecations for loads, ndfromtxt, and mafromtxt in npyio

    numpy.loads was deprecated in v1.15, with the recommendation that users use pickle.loads instead. ndfromtxt and mafromtxt were both deprecated in v1.17 - users should use numpy.genfromtxt instead with the appropriate value for the usemask parameter.

    (gh-19615)

    ... (truncated)

    Commits

    Dependabot compatibility score

    Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.


    Dependabot commands and options

    You can trigger Dependabot actions by commenting on this PR:

    • @dependabot rebase will rebase this PR
    • @dependabot recreate will recreate this PR, overwriting any edits that have been made to it
    • @dependabot merge will merge this PR after your CI passes on it
    • @dependabot squash and merge will squash and merge this PR after your CI passes on it
    • @dependabot cancel merge will cancel a previously requested merge and block automerging
    • @dependabot reopen will reopen this PR if it is closed
    • @dependabot close will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually
    • @dependabot ignore this major version will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this minor version will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this dependency will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
    • @dependabot use these labels will set the current labels as the default for future PRs for this repo and language
    • @dependabot use these reviewers will set the current reviewers as the default for future PRs for this repo and language
    • @dependabot use these assignees will set the current assignees as the default for future PRs for this repo and language
    • @dependabot use this milestone will set the current milestone as the default for future PRs for this repo and language

    You can disable automated security fix PRs for this repo from the Security Alerts page.

    dependencies 
    opened by dependabot[bot] 1
  • Improve packaging

    Improve packaging

    Use of Khiva Python requires a lot of previous installation of Arrayfire and other dependencies. We could try to bundle most of the dependencies (Arrayfire at least) in order to make life easier to our users.

    opened by raulbocanegra 0
Releases(v0.3.0)
  • v0.3.0(Jun 11, 2019)

    Added

    • mass (Mueen's Algorithm for Similarity Search) function with a proper public interface.
    • findBestNOccurrences function.

    Improved

    • STOMP (self-join) performance has been improved by a ~54%.

    Fixed

    • STOMP (self-join) doesn't crash in batched mode for long time series.
    Source code(tar.gz)
    Source code(zip)
  • v0.2.2(May 7, 2019)

  • v0.2.1(Mar 5, 2019)

  • v0.2.0(Feb 27, 2019)

    Added

    • KMeans algorithm.
    • KShape Algorithm.
    • Added Ljung-Box test.
    • SBD distance function.

    Changed

    • Implementation improvement of stomp function and find motifs and discords functions.
    Source code(tar.gz)
    Source code(zip)
Owner
Shapelets
Accelerated Time Series Analytics
Shapelets
Few-Shot Object Detection via Association and DIscrimination

Few-Shot Object Detection via Association and DIscrimination Code release of our NeurIPS 2021 paper: Few-Shot Object Detection via Association and DIs

Cao Yuhang 49 Dec 18, 2022
SAPIEN Manipulation Skill Benchmark

ManiSkill Benchmark SAPIEN Manipulation Skill Benchmark (abbreviated as ManiSkill, pronounced as "Many Skill") is a large-scale learning-from-demonstr

Hao Su's Lab, UCSD 107 Jan 08, 2023
The fastai deep learning library

Welcome to fastai fastai simplifies training fast and accurate neural nets using modern best practices Important: This documentation covers fastai v2,

fast.ai 23.2k Jan 07, 2023
A pytorch implementation of Paper "Improved Training of Wasserstein GANs"

WGAN-GP An pytorch implementation of Paper "Improved Training of Wasserstein GANs". Prerequisites Python, NumPy, SciPy, Matplotlib A recent NVIDIA GPU

Marvin Cao 1.4k Dec 14, 2022
Group R-CNN for Point-based Weakly Semi-supervised Object Detection (CVPR2022)

Group R-CNN for Point-based Weakly Semi-supervised Object Detection (CVPR2022) By Shilong Zhang*, Zhuoran Yu*, Liyang Liu*, Xinjiang Wang, Aojun Zhou,

Shilong Zhang 129 Dec 24, 2022
A Pose Estimator for Dense Reconstruction with the Structured Light Illumination Sensor

Phase-SLAM A Pose Estimator for Dense Reconstruction with the Structured Light Illumination Sensor This open source is written by MATLAB Run Mode Open

Xi Zheng 14 Dec 19, 2022
Official Pytorch implementation of 'GOCor: Bringing Globally Optimized Correspondence Volumes into Your Neural Network' (NeurIPS 2020)

Official implementation of GOCor This is the official implementation of our paper : GOCor: Bringing Globally Optimized Correspondence Volumes into You

Prune Truong 71 Nov 18, 2022
BERTMap: A BERT-Based Ontology Alignment System

BERTMap: A BERT-based Ontology Alignment System Important Notices The relevant paper was accepted in AAAI-2022. Arxiv version is available at: https:/

KRR 36 Dec 24, 2022
On the adaptation of recurrent neural networks for system identification

On the adaptation of recurrent neural networks for system identification This repository contains the Python code to reproduce the results of the pape

Marco Forgione 3 Jan 13, 2022
Bulk2Space is a spatial deconvolution method based on deep learning frameworks

Bulk2Space Spatially resolved single-cell deconvolution of bulk transcriptomes using Bulk2Space Bulk2Space is a spatial deconvolution method based on

Dr. FAN, Xiaohui 60 Dec 27, 2022
The Surprising Effectiveness of Visual Odometry Techniques for Embodied PointGoal Navigation

PointNav-VO The Surprising Effectiveness of Visual Odometry Techniques for Embodied PointGoal Navigation Project Page | Paper Table of Contents Setup

Xiaoming Zhao 41 Dec 15, 2022
Codebase for Amodal Segmentation through Out-of-Task andOut-of-Distribution Generalization with a Bayesian Model

Codebase for Amodal Segmentation through Out-of-Task andOut-of-Distribution Generalization with a Bayesian Model

Yihong Sun 12 Nov 15, 2022
HiPAL: A Deep Framework for Physician Burnout Prediction Using Activity Logs in Electronic Health Records

HiPAL Code for KDD'22 Applied Data Science Track submission -- HiPAL: A Deep Framework for Physician Burnout Prediction Using Activity Logs in Electro

Hanyang Liu 4 Aug 08, 2022
PyTorch implementation for our AAAI 2022 Paper "Graph-wise Common Latent Factor Extraction for Unsupervised Graph Representation Learning"

deepGCFX PyTorch implementation for our AAAI 2022 Paper "Graph-wise Common Latent Factor Extraction for Unsupervised Graph Representation Learning" Pr

Thilini Cooray 4 Aug 11, 2022
A PyTorch implementation for PyramidNets (Deep Pyramidal Residual Networks)

A PyTorch implementation for PyramidNets (Deep Pyramidal Residual Networks) This repository contains a PyTorch implementation for the paper: Deep Pyra

Greg Dongyoon Han 262 Jan 03, 2023
Custom IMDB Dataset is extracted between 2020-2021 and custom distilBERT model is trained for movie success probability prediction

IMDB Success Predictor Project involves Web Scraping custom IMDB data between 2020 and 2021 of 10000 movies and shows sorted by number of votes ,fine

Gautam Diwan 1 Jan 18, 2022
A strongly-typed genetic programming framework for Python

monkeys "If an army of monkeys were strumming on typewriters they might write all the books in the British Museum." monkeys is a framework designed to

H. Chase Stevens 115 Nov 27, 2022
PyTorch implementation of Munchausen Reinforcement Learning based on DQN and SAC. Handles discrete and continuous action spaces

Exploring Munchausen Reinforcement Learning This is the project repository of my team in the "Advanced Deep Learning for Robotics" course at TUM. Our

Mohamed Amine Ketata 10 Mar 10, 2022
WatermarkRemoval-WDNet-WACV2021

WatermarkRemoval-WDNet-WACV2021 Thank you for your attention. Citation Please cite the related works in your publications if it helps your research: @

LUYI 63 Dec 05, 2022
Pytorch implementation of the unsupervised object discovery method LOST.

LOST Pytorch implementation of the unsupervised object discovery method LOST. More details can be found in the paper: Localizing Objects with Self-Sup

Valeo.ai 189 Dec 25, 2022