A Broad Study on the Transferability of Visual Representations with Contrastive Learning

Overview

A Broad Study on the Transferability of Visual Representations with Contrastive Learning

Paper

This repository contains code for the paper: A Broad Study on the Transferability of Visual Representations with Contrastive Learning

Prerequisites

  • PyTorch 1.7
  • pytorch-lightning 1.1.5

Install the required dependencies by:

pip install -r environments/requirements.txt

How to Run

Download Datasets

The data should be located in ~/datasets/cdfsl folder. To download all the datasets:

bash data_loader/download.sh 

Training

python main.py --system ${system}  --dataset ${train_dataset} --gpus -1 --model resnet50 

where system is one of base_finetune(ce), moco (SelfSupCon), moco_mit (SupCon), base_plus_moco (CE+SelfSupCon), or supervised_mean2 (SupCon+SelfSupCon).

To know more about the cli arguments, see configs.py.

You can also run the training script by bash scripts/run_linear_bn.sh -m train.

Evaluation

Linear evaluation

python main.py --system linear_eval \
  --train_aug true --val_aug false \
  --dataset ${val_data}_train --val_dataset ${val_data}_test \
  --ckpt ${ckpt} --load_base --batch_size ${bs} \
  --lr ${lr} --optim_wd ${wd}  --linear_bn --linear_bn_affine false \
  --scheduler step  --step_lr_milestones ${_milestones}

You can also run the evaluation script by bash scripts/run_linear_bn.sh -m tune to hyper-parameter tune, and then bash scripts/run_linear_bn.sh -m test to do linear-evaluation on the optimal hyper-parameter.

Few-shot

python main.py --system few_shot \
    --val_dataset ${val_data} \
    --load_base --test --model ${model} \
    --ckpt ${ckpt} --num_workers 4

You can also run the evaluation script by bash scripts/run_fewshot.sh.

Full-network finetuning

python main.py --system linear_transfer \
    --dataset ${val_data}_train --val_dataset ${val_data}_test \
    --ckpt ${ckpt} --load_base \
    --batch_size ${bs} --lr ${lr} --optim_wd ${wd} \
    --scheduler step  --step_lr_milestones ${_milestones} \
    --linear_bn --linear_bn_affine false \
    --max_epochs ${max_epochs}

You can also run the evaluation script by bash scripts/run_transfer_bn.sh -m tune to hyper-parameter tune, and then bash scripts/run_transfer_bn.sh -m test to do linear-evaluation on the optimal hyper-parameter.

Pretrained models

  • ImageNet pretrained models can be found here

  • mini-ImageNet pretrained models can be found here

You can also convert our pretrained checkpoint into torchvision resnet style checkpoint by python utils/convert_to_torchvision_resnet.py -i [input ckpt] -o [output path]

Citation

If you find this repo useful for your research, please consider citing the paper:

@misc{islam2021broad,
      title={A Broad Study on the Transferability of Visual Representations with Contrastive Learning}, 
      author={Ashraful Islam and Chun-Fu Chen and Rameswar Panda and Leonid Karlinsky and Richard Radke and Rogerio Feris},
      year={2021},
      eprint={2103.13517},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Acknowledgement

You might also like...
SUPERVISED-CONTRASTIVE-LEARNING-FOR-PRE-TRAINED-LANGUAGE-MODEL-FINE-TUNING - The Facebook paper about fine tuning RoBERTa with contrastive loss
PyTorch implementation code for the paper MixCo: Mix-up Contrastive Learning for Visual Representation

How to Reproduce our Results This repository contains PyTorch implementation code for the paper MixCo: Mix-up Contrastive Learning for Visual Represen

Conformer: Local Features Coupling Global Representations for Visual Recognition

Conformer: Local Features Coupling Global Representations for Visual Recognition (arxiv) This repository is built upon DeiT and timm Usage First, inst

ImageNet-CoG is a benchmark for concept generalization. It provides a full evaluation framework for pre-trained visual representations which measure how well they generalize to unseen concepts.

The ImageNet-CoG Benchmark Project Website Paper (arXiv) Code repository for the ImageNet-CoG Benchmark introduced in the paper "Concept Generalizatio

Re-implementation of the Noise Contrastive Estimation algorithm for pyTorch, following "Noise-contrastive estimation: A new estimation principle for unnormalized statistical models." (Gutmann and Hyvarinen, AISTATS 2010)

Noise Contrastive Estimation for pyTorch Overview This repository contains a re-implementation of the Noise Contrastive Estimation algorithm, implemen

Code for Efficient Visual Pretraining with Contrastive Detection

Code for DetCon This repository contains code for the ICCV 2021 paper "Efficient Visual Pretraining with Contrastive Detection" by Olivier J. Hénaff,

The official implementation of CVPR 2021 Paper: Improving Weakly Supervised Visual Grounding by Contrastive Knowledge Distillation.

Improving Weakly Supervised Visual Grounding by Contrastive Knowledge Distillation This repository is the official implementation of CVPR 2021 paper:

This repository is the official implementation of Unleashing the Power of Contrastive Self-Supervised Visual Models via Contrast-Regularized Fine-Tuning (NeurIPS21).
This repository is the official implementation of Unleashing the Power of Contrastive Self-Supervised Visual Models via Contrast-Regularized Fine-Tuning (NeurIPS21).

Core-tuning This repository is the official implementation of ``Unleashing the Power of Contrastive Self-Supervised Visual Models via Contrast-Regular

improvement of CLIP features over the traditional resnet features on the visual question answering, image captioning, navigation and visual entailment tasks.

CLIP-ViL In our paper "How Much Can CLIP Benefit Vision-and-Language Tasks?", we show the improvement of CLIP features over the traditional resnet fea

Comments
  • eurosat.zip cannot be found on google drive

    eurosat.zip cannot be found on google drive

    eurosat.zip cannot be found on google drive with the url: https://drive.google.com/uc?id=1FYZvuBePf2tuEsEaBCsACtIHi6eFpSwe

    Can you please check the url? Thank you.

    opened by Cohesion97 2
  • How to get CKA scores between different stages in Figure 4?

    How to get CKA scores between different stages in Figure 4?

    Thanks for your amazing study! I have some questions about the CKA scores shown in Figure 4. Take ResNet-50 as an example, which has five stages.

    1. Does stage 5 include the average pooling layer to output the feature of size 1x2048?
    2. Given an input sample, for the feature after each in-between stage (1-4), do you flatten the original feature map (1 x c x h x w) to a vector (1 x chw) OR do you adopt an extra average pooling process to obtain a vector (1 x c)? I've tried to flatten the feature map after each stage but obtained a very high-dimension vector (about 1M).

    (c: feature dimension; h: height; w: width) Looking forward to your reply, thanks.

    opened by klfsalfjl 0
Releases(v0.1.0)
Owner
Ashraful Islam
Ashraful Islam
AWS provides a Python SDK, "Boto3" ,which can be used to access the AWS-account from the local.

Boto3 - The AWS SDK for Python Boto3 is the Amazon Web Services (AWS) Software Development Kit (SDK) for Python, which allows Python developers to wri

Shreyas Srivastava 1 Oct 25, 2021
Release of the ConditionalQA dataset

ConditionalQA Datasets accompanying the paper ConditionalQA: A Complex Reading Comprehension Dataset with Conditional Answers. Disclaimer This dataset

14 Oct 17, 2022
[AAAI 2022] Separate Contrastive Learning for Organs-at-Risk and Gross-Tumor-Volume Segmentation with Limited Annotation

A paper Introduction This is an official release of the paper Separate Contrastive Learning for Organs-at-Risk and Gross-Tumor-Volume Segmentation wit

Jiacheng Wang 14 Dec 08, 2022
Self-Supervised Deep Blind Video Super-Resolution

Self-Blind-VSR Paper | Discussion Self-Supervised Deep Blind Video Super-Resolution By Haoran Bai and Jinshan Pan Abstract Existing deep learning-base

Haoran Bai 35 Dec 09, 2022
Pseudo lidar - (CVPR 2019) Pseudo-LiDAR from Visual Depth Estimation: Bridging the Gap in 3D Object Detection for Autonomous Driving

Pseudo-LiDAR from Visual Depth Estimation: Bridging the Gap in 3D Object Detection for Autonomous Driving This paper has been accpeted by Conference o

Yan Wang 881 Dec 27, 2022
Self-Supervised Pillar Motion Learning for Autonomous Driving (CVPR 2021)

Self-Supervised Pillar Motion Learning for Autonomous Driving Chenxu Luo, Xiaodong Yang, Alan Yuille Self-Supervised Pillar Motion Learning for Autono

QCraft 101 Dec 05, 2022
A simple python library for fast image generation of people who do not exist.

Random Face A simple python library for fast image generation of people who do not exist. For more details, please refer to the [paper](https://arxiv.

Sergei Belousov 170 Dec 15, 2022
Python Blood Vessel Topology Analysis

Python Blood Vessel Topology Analysis This repository is not being updated anymore. The new version of PyVesTo is called PyVaNe and is available at ht

6 Nov 15, 2022
Python implementation of Lightning-rod Agent, the Stack4Things board-side probe

Iotronic Lightning-rod Agent Python implementation of Lightning-rod Agent, the Stack4Things board-side probe. Free software: Apache 2.0 license Websit

2 May 19, 2022
Fashion Recommender System With Python

Fashion-Recommender-System Thr growing e-commerce industry presents us with a la

Omkar Gawade 2 Feb 02, 2022
DeepVoxels is an object-specific, persistent 3D feature embedding.

DeepVoxels is an object-specific, persistent 3D feature embedding. It is found by globally optimizing over all available 2D observations of

Vincent Sitzmann 196 Dec 25, 2022
Code accompanying the paper on "An Empirical Investigation of Domain Generalization with Empirical Risk Minimizers" published at NeurIPS, 2021

Code for "An Empirical Investigation of Domian Generalization with Empirical Risk Minimizers" (NeurIPS 2021) Motivation and Introduction Domain Genera

Meta Research 15 Dec 27, 2022
Detection of drones using their thermal signatures from thermal camera through YOLO-V3 based CNN with modifications to encapsulate drone motion

Drone Detection using Thermal Signature This repository highlights the work for night-time drone detection using a using an Optris PI Lightweight ther

Chong Yu Quan 6 Dec 31, 2022
Implementation of "Scaled-YOLOv4: Scaling Cross Stage Partial Network" using PyTorch framwork.

YOLOv4-large This is the implementation of "Scaled-YOLOv4: Scaling Cross Stage Partial Network" using PyTorch framwork. YOLOv4-CSP YOLOv4-tiny YOLOv4-

Kin-Yiu, Wong 2k Jan 02, 2023
Contains modeling practice materials and homework for the Computational Neuroscience course at Okinawa Institute of Science and Technology

A310 Computational Neuroscience - Okinawa Institute of Science and Technology, 2022 This repository contains modeling practice materials and homework

Sungho Hong 1 Jan 24, 2022
Dilated Convolution for Semantic Image Segmentation

Multi-Scale Context Aggregation by Dilated Convolutions Introduction Properties of dilated convolution are discussed in our ICLR 2016 conference paper

Fisher Yu 764 Dec 26, 2022
Implements the training, testing and editing tools for "Pluralistic Image Completion"

Pluralistic Image Completion ArXiv | Project Page | Online Demo | Video(demo) This repository implements the training, testing and editing tools for "

Chuanxia Zheng 615 Dec 08, 2022
A very simple tool to rewrite parameters such as attributes and constants for OPs in ONNX models. Simple Attribute and Constant Modifier for ONNX.

sam4onnx A very simple tool to rewrite parameters such as attributes and constants for OPs in ONNX models. Simple Attribute and Constant Modifier for

Katsuya Hyodo 6 May 15, 2022
Code for reproducing our analysis in the paper titled: Image Cropping on Twitter: Fairness Metrics, their Limitations, and the Importance of Representation, Design, and Agency

Image Crop Analysis This is a repo for the code used for reproducing our Image Crop Analysis paper as shared on our blog post. If you plan to use this

Twitter Research 239 Jan 02, 2023
ServiceX Transformer that converts flat ROOT ntuples into columnwise data

ServiceX_Uproot_Transformer ServiceX Transformer that converts flat ROOT ntuples into columnwise data Usage You can invoke the transformer from the co

Vis 0 Jan 20, 2022