SymmetryNet: Learning to Predict Reflectional and Rotational Symmetries of 3D Shapes from Single-View RGB-D Images

Overview

SymmetryNet

SymmetryNet: Learning to Predict Reflectional and Rotational Symmetries of 3D Shapes from Single-View RGB-D Images

ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia 2020)

Created by Yifei Shi, Junwen Huang, Hongjia Zhang, Xin Xu, Szymon Rusinkiewicz and Kai Xu

teaser

This repository includes:

  • tools: the training scripts and evaluation scripts
    • tools/train_shapenet.py: the training script for shapenet dataset
    • tools/train_ycb.py: the training script for ycb dataset
    • tools/train_scannet.py: the training script for scannet dataset
    • tools/evaluation: the evaluation scripts
      • evaluation/eval_ref_shapenet.py: the evaluation script for reflectional symmetry on shapenet dataset
      • evaluation/eval_ref_ycb.py: the evaluation script for reflectional symmetry on ycb dataset
      • evaluation/eval_ref_scannet.py: the evaluation script for reflectional symmetry on scannet dataset
      • evaluation/eval_rot_shapenet.py: the evaluation script for rotational symmetry on shapenet dataset
      • evaluation/eval_rot_ycb.py: the evaluation script for rotational symmetry on ycb dataset
      • evaluation/eval_rot_scannet.py: the evaluation script for rotational symmetry on scannet dataset
  • lib: the core Python library for networks and loss
    • lib/loss.py: symmetrynet loss caculation for both reflectional and rotational symmetries,the loss items are listed at the end of the text
    • lib/network.py: network architecture
    • lib/tools.py: functions for the operation of rotation and reflection
    • lib/verification.py: verification of the rotational and reflectional symmetries
  • datasets: the dataloader and training/testing lists
    • datasets/shapenet/dataset.py: the training dataloader for shapnet dataset
    • datasets/shapenet/dataset_eval.py: the evaluation dataloader for shapnet dataset
      • datasets/shapenet/dataset_config/*.txt: training and testing splits for shapenet dataset, the testing splits includ holdout view/instance/category
    • datasets/ycb/dataset.py: the training dataloader for ycb dataset
    • datasets/ycb/dataset_eval.py: the evaluation dataloader for ycb dataset
      • datasets/ycb/dataset_config/*.txt: training and testing splits for shapenet dataset,the training/testing splits fallow the ycb defult settings
    • datasets/shapenet/dataset.py: the training dataloader for scannet dataset
    • datasets/shapenet/dataset_eval.py: the evaluation dataloader for scannet dataset
      • datasets/scannet/dataset_config/*.txt: training and testing splits for scannet dataset,the testing splits includ holdout view/scene

Environments

pytorch>=0.4.1 python >=3.6

Datasets

  • ShapeNet dataset

    • shapenetcore: this folder saves the models and their ground truth symmetries for each instance
    • rendered_data: this folder saves the rgbd images that we rendered for each instance, including their ground truth pose and camera intrinsic matrix, etc.
    • name_list.txt: this file saves the correspondence between the name of instances and their ID in this project(the names are too long to identify)
  • YCB dataset

    • models: this folder saves the ground truth model symmetry for each instance
    • data: this folder saves the rgbd videos and the ground truth poses and camera information
    • classes.txt: this file saves the correspondence between the name of YCB objects and their *.xyz models
    • symmetries.txt: this file saves all the ground truth symmetries for ycb object models

Training

To train the network with the default parameter on shapenet dataset, run

python tools/train_shapenet.py --dataset_root= your/folder/to/shapnet/dataset

To train the network with the default parameter on ycb dataset, run

python tools/train_ycb.py --dataset_root= your/folder/to/ycb/dataset

To train the network with the default parameter on scannet dataset, run

python tools/train_scannet.py --dataset_root= your/folder/to/scannet/dataset

Evaluation

To evaluate the model with our metric on shapenet, for reflectional symmetry, run

python tools/evaluation/eval_ref_shapenet.py

for rotational symmetry, run

python tools/evaluation/eval_rot_shapenet.py

To evaluate the model with our metric on ycb, for reflectional symmetry, run

python tools/evaluation/eval_ref_ycb.py

for rotational symmetry, run

python tools/evaluation/eval_rot_ycb.py

To evaluate the model with our metric on scannet, for reflectional symmetry, run

python tools/evaluation/eval_ref_scannet.py

for rotational symmetry, run

python tools/evaluation/eval_rot_scannet.py

Pretrained model & data download

The pretrained models and data can be found at here (dropbox) and here (baidu yunpan, password: symm).

Code for the paper: On Pathologies in KL-Regularized Reinforcement Learning from Expert Demonstrations

Non-Parametric Prior Actor-Critic (N-PPAC) This repository contains the code for On Pathologies in KL-Regularized Reinforcement Learning from Expert D

Cong Lu 5 May 13, 2022
Code for CVPR2021 paper "Learning Salient Boundary Feature for Anchor-free Temporal Action Localization"

AFSD: Learning Salient Boundary Feature for Anchor-free Temporal Action Localization This is an official implementation in PyTorch of AFSD. Our paper

Tencent YouTu Research 146 Dec 24, 2022
Hitters Linear Regression - Hitters Linear Regression With Python

Hitters_Linear_Regression Kullanacağımız veri seti Carnegie Mellon Üniversitesi'

AyseBuyukcelik 2 Jan 26, 2022
Testbed of AI Systems Quality Management

qunomon Description A testbed for testing and managing AI system qualities. Demo Sorry. Not deployment public server at alpha version. Requirement Ins

AIST AIRC 15 Nov 27, 2021
The official repository for our paper "The Neural Data Router: Adaptive Control Flow in Transformers Improves Systematic Generalization".

Codebase for learning control flow in transformers The official repository for our paper "The Neural Data Router: Adaptive Control Flow in Transformer

Csordás Róbert 24 Oct 15, 2022
Adversarial Attacks on Probabilistic Autoregressive Forecasting Models.

Attack-Probabilistic-Models This is the source code for Adversarial Attacks on Probabilistic Autoregressive Forecasting Models. This repository contai

SRI Lab, ETH Zurich 25 Sep 14, 2022
Fang Zhonghao 13 Nov 19, 2022
The official PyTorch code implementation of "Personalized Trajectory Prediction via Distribution Discrimination" in ICCV 2021.

Personalized Trajectory Prediction via Distribution Discrimination (DisDis) The official PyTorch code implementation of "Personalized Trajectory Predi

25 Dec 20, 2022
Official PyTorch implementation of "Evolving Search Space for Neural Architecture Search"

Evolving Search Space for Neural Architecture Search Usage Install all required dependencies in requirements.txt and replace all ..path/..to in the co

Yuanzheng Ci 10 Oct 24, 2022
automatic color-grading

color-matcher Description color-matcher enables color transfer across images which comes in handy for automatic color-grading of photographs, painting

hahnec 168 Jan 05, 2023
A Vision Transformer approach that uses concatenated query and reference images to learn the relationship between query and reference images directly.

A Vision Transformer approach that uses concatenated query and reference images to learn the relationship between query and reference images directly.

24 Dec 13, 2022
Digan - Official PyTorch implementation of Generating Videos with Dynamics-aware Implicit Generative Adversarial Networks

DIGAN (ICLR 2022) Official PyTorch implementation of "Generating Videos with Dyn

Sihyun Yu 147 Dec 31, 2022
A clear, concise, simple yet powerful and efficient API for deep learning.

The Gluon API Specification The Gluon API specification is an effort to improve speed, flexibility, and accessibility of deep learning technology for

Gluon API 2.3k Dec 17, 2022
End-To-End Optimization of LiDAR Beam Configuration

End-To-End Optimization of LiDAR Beam Configuration arXiv | IEEE Xplore This repository is the official implementation of the paper: End-To-End Optimi

Niclas 30 Nov 28, 2022
PyContinual (An Easy and Extendible Framework for Continual Learning)

PyContinual (An Easy and Extendible Framework for Continual Learning) Easy to Use You can sumply change the baseline, backbone and task, and then read

Zixuan Ke 176 Jan 05, 2023
Out of Distribution Detection on Natural Adversarial Examples

OOD-on-NAE Research project on out of distribution detection for the Computer Vision course by Prof. Rob Fergus (CSCI-GA 2271) Paper out on arXiv - ht

Anugya 1 Jun 08, 2022
hipCaffe: the HIP port of Caffe

Caffe Caffe is a deep learning framework made with expression, speed, and modularity in mind. It is developed by the Berkeley Vision and Learning Cent

ROCm Software Platform 126 Dec 05, 2022
Deep learning based hand gesture recognition using LSTM and MediaPipie.

Hand Gesture Recognition Deep learning based hand gesture recognition using LSTM and MediaPipie. Demo video using PingPong Robot Files Pretrained mode

Brad 24 Nov 11, 2022
Official Keras Implementation for UNet++ in IEEE Transactions on Medical Imaging and DLMIA 2018

UNet++: A Nested U-Net Architecture for Medical Image Segmentation UNet++ is a new general purpose image segmentation architecture for more accurate i

Zongwei Zhou 1.8k Dec 27, 2022
Discord-Protect is a simple discord bot allowing you to have some security on your discord server by ordering a captcha to the user who joins your server.

Discord-Protect Discord-Protect is a simple discord bot allowing you to have some security on your discord server by ordering a captcha to the user wh

Tir Omar 2 Oct 28, 2021