An Open-Source Tool for Automatic Disease Diagnosis..

Overview

OpenMedicalChatbox

An Open-Source Package for Automatic Disease Diagnosis.

Overview

Due to the lack of open source for existing RL-base automated diagnosis methods. It's hard to make a comparison for different methods. OpenMedicalChatbox integrates several current diagnostic methods and datasets.

Dataset

At here, we show all the mentioned datasets in existing medical methods, including MZ-4, Dxy, MZ-10 and a simulated dataset based on Symcat. In goal.set in their folders, explicit symptoms, implicit symptoms and diagnosis given by doctors are recorded for each sample. Also, we provide the corresponding tools to extend them for each methods.

Here is the overview of datasets.

Name # of user goal # of diseases Ave. # of im. sym # of sym.
MZ-4 1,733 4 5.46 230
MZ-10 3,745 10 5.28 318
Dxy 527 5 1.67 41
SymCat-SD-90 30,000 90 2.60 266

Methods

Besides, we reproduce several mainstream models for comparison. For further information, you can refer to the paper.

  1. Flat-DQN: This is the baseline DQN agent, which has one layer policy and an action space including both symptoms and diseases.
  2. HRL-pretrained: This is a hierarchical model. The low level policy is pre-trained first and then the high level policy is trained. Besides, there is no disease classifier and the diagnosis is made by workers.
  3. REFUEL: This is a reinforcement learning method with reward shaping and feature rebuilding. It uses a branch to reconstruct the symptom vector to guide the policy gradient.
  4. KR-DS: This is an improved method based on Flat-DQN. It integrates a relational refinement branch and a knowledge-routed graph to strengthen the relationship between disease and symptoms. Here we adjust the code from fantasySE.
  5. GAMP: This is a GAN-based policy gradient network. It uses the GAN network to avoid generating randomized trials of symptom, and add mutual information to encourage the model to select the most discriminative symptoms.
  6. HRL: This is a new hierarchical policy we purposed for diagnosis. The high level policy consists of a master model that is responsible for triggering a low level model, the low level policy consists of several symptom checkers and a disease classifier. Also, we try not to divide symptoms into different group (Denoted as HRL (w/o grouped)) to demonstrate the strength of two-level structure and remove the separate disease discriminator (Denoted as HRL (w/o discriminator)) to show the effect of disease grouping in symptom information extraction.

Installation

  1. Install the packages
pip install OpenMedicalChatBox

or Cloning this repo

git clone https://github.com/Guardianzc/OpenMedicalChatBox.git
cd OpenMedicalChatBox
python setup.py install

After installation, you can try running demo.py to check if OpenMedicalChatBox works well

python demo.py
  1. Redirect the parameter file0 to the dataset needed. Note that if you use the KR-DS model, please redirect to "dataset_dxy" folder, and HRL dataset use the "HRL" folder.
  2. Tune the parameter as you need.
  3. Run the file or use the code below

Examples

The following code shows how to use OpenMedicalChatBox to apply different diagnosis method on datasets.

import OpenMedicalChatBox as OMCB
from warnings import simplefilter
simplefilter(action='ignore', category=FutureWarning)

HRL_test = OMCB.HRL(dataset_path = '.\Data\mz4\HRL\\', model_save_path = './simulate', groups = 2, model_load_path = './simulate', cuda_idx = 1, train_mode = True)
HRL_test.run()

KRDS_test = OMCB.KRDS(dataset_path = '.\Data\mz4\dataset_dxy\\', model_save_path = './simulate', model_load_path = './simulate', cuda_idx = 1, train_mode = True)
KRDS_test.run()


Flat_DQN_test = OMCB.Flat_DQN(dataset_path = '.\Data\mz4\\', model_save_path = './simulate',  model_load_path = './simulate', cuda_idx = 1, train_mode = True)
Flat_DQN_test.run()


GAMP_test = OMCB.GAMP(dataset_path = '.\Data\mz4\\', model_save_path = './simulate', model_load_path = './simulate', cuda_idx = 1, train_mode = True)
GAMP_test.run()

REFUEL_test = OMCB.REFUEL(dataset_path = '.\Data\mz4\\', model_save_path = './simulate', model_load_path = './simulate', cuda_idx = 0, train_mode = True)
REFUEL_test.run()

The detail experimental parameters are shown in here.

Experiment

We show the accuracy for disease diagnosis (Acc.), recall for symptom recovery (M.R.) and the average turns in interaction (Avg. T).

  • In real world dataset
Dxy MZ-4 MZ-10
Model Acc. M.R. Avg.T Acc. M.R. Avg.T Acc. M.R. Avg.T
Flat-DQN 0.731 0.110 1.96 0.681 0.062 1.27 0.408 0.047 9.75
KR-DS 0.740 0.399 5.65 0.678 0.177 4.61 0.485 0.279 5.95
REFUEL 0.721 0.186 3.11 0.716 0.215 5.01 0.505 0.262 5.50
GAMP 0.731 0.268 2.84 0.644 0.107 2.93 0.500 0.067 1.78
Classifier Lower Bound 0.682 -- -- 0.671 -- -- 0.532 -- --
HRL (w/o grouped) 0.731 0.297 6.61 0.689 0.004 2.25 0.540 0.114 4.59
HRL (w/o discriminator) -- 0.512 8.42 -- 0.233 5.71 -- 0.330 8.75
HRL 0.779 0.424 8.61 0.735 0.229 5.08 0.556 0.295 6.99
Classifier Upper Bound 0.846 -- -- 0.755 -- -- 0.612 -- --
  • In synthetic dataset
Model Acc. M.R. Avg.T
Flat-DQN 0.343 0.023 1.23
KR-DS 0.357 0.388 6.24
REFUEL 0.347 0.161 4.56
GAMP 0.267 0.077 1.36
Classifier Lower Bound 0.308 -- --
HRL-pretrained 0.452 -- 3.42
HRL 0.504 0.495 6.48
Classifier Upper Bound 0.781 -- --

Reference

Citation

Please cite our paper if you use toolkit

@article{liao2020task,
  title={Task-oriented dialogue system for automatic disease diagnosis via hierarchical reinforcement learning},
  author={Liao, Kangenbei and Liu, Qianlong and Wei, Zhongyu and Peng, Baolin and Chen, Qin and Sun, Weijian and Huang, Xuanjing},
  journal={arXiv preprint arXiv:2004.14254},
  year={2020}
}
Owner
School of Data Science, Fudan University
Code & Data for Enhancing Photorealism Enhancement

Code & Data for Enhancing Photorealism Enhancement

Intel ISL (Intel Intelligent Systems Lab) 1.1k Jan 08, 2023
MG-GCN: Scalable Multi-GPU GCN Training Framework

MG-GCN MG-GCN: multi-GPU GCN training framework. For more information, please read our paper. After cloning our repository, run git submodule update -

Translational Data Analytics (TDA) Lab @GaTech 6 Oct 24, 2022
MetaAvatar: Learning Animatable Clothed Human Models from Few Depth Images

MetaAvatar: Learning Animatable Clothed Human Models from Few Depth Images This repository contains the implementation of our paper MetaAvatar: Learni

sfwang 96 Dec 13, 2022
Code for Generating Disentangled Arguments with Prompts: A Simple Event Extraction Framework that Works

GDAP Code for Generating Disentangled Arguments with Prompts: A Simple Event Extraction Framework that Works Environment Python (verified: v3.8) CUDA

45 Oct 29, 2022
Breaking Shortcut: Exploring Fully Convolutional Cycle-Consistency for Video Correspondence Learning

Breaking Shortcut: Exploring Fully Convolutional Cycle-Consistency for Video Correspondence Learning Yansong Tang *, Zhenyu Jiang *, Zhenda Xie *, Yue

Zhenyu Jiang 12 Nov 16, 2022
Camera ready code repo for the NeuRIPS 2021 paper: "Impression learning: Online representation learning with synaptic plasticity".

Impression-Learning-Camera-Ready Camera ready code repo for the NeuRIPS 2021 paper: "Impression learning: Online representation learning with synaptic

2 Feb 09, 2022
3D-CariGAN: An End-to-End Solution to 3D Caricature Generation from Normal Face Photos

3D-CariGAN: An End-to-End Solution to 3D Caricature Generation from Normal Face Photos This repository contains the source code and dataset for the pa

54 Oct 09, 2022
This repository contains a re-implementation of the code for the CVPR 2021 paper "Omnimatte: Associating Objects and Their Effects in Video."

Omnimatte in PyTorch This repository contains a re-implementation of the code for the CVPR 2021 paper "Omnimatte: Associating Objects and Their Effect

Erika Lu 728 Dec 28, 2022
Vector AI — A platform for building vector based applications. Encode, query and analyse data using vectors.

Vector AI is a framework designed to make the process of building production grade vector based applications as quickly and easily as possible. Create

Vector AI 267 Dec 23, 2022
Lightweight Cuda Renderer with Python Wrapper.

pyRender Lightweight Cuda Renderer with Python Wrapper. Compile Change compile.sh line 5 to the glm library include path. This library can be download

Jingwei Huang 53 Dec 02, 2022
This PyTorch package implements MoEBERT: from BERT to Mixture-of-Experts via Importance-Guided Adaptation (NAACL 2022).

MoEBERT This PyTorch package implements MoEBERT: from BERT to Mixture-of-Experts via Importance-Guided Adaptation (NAACL 2022). Installation Create an

Simiao Zuo 34 Dec 24, 2022
Emulation and Feedback Fuzzing of Firmware with Memory Sanitization

BaseSAFE This repository contains the BaseSAFE Rust APIs, introduced by "BaseSAFE: Baseband SAnitized Fuzzing through Emulation". The example/ directo

Security in Telecommunications 138 Dec 16, 2022
Converts given image (png, jpg, etc) to amogus gif.

Image to Amogus Converter Converts given image (.png, .jpg, etc) to an amogus gif! Usage Place image in the /target/ folder (or anywhere realistically

Hank Magan 1 Nov 24, 2021
Learning Multiresolution Matrix Factorization and its Wavelet Networks on Graphs

Project Learning Multiresolution Matrix Factorization and its Wavelet Networks on Graphs, https://arxiv.org/pdf/2111.01940.pdf. Authors Truong Son Hy

5 Jun 28, 2022
The code for SAG-DTA: Prediction of Drug–Target Affinity Using Self-Attention Graph Network.

SAG-DTA The code is the implementation for the paper 'SAG-DTA: Prediction of Drug–Target Affinity Using Self-Attention Graph Network'. Requirements py

Shugang Zhang 7 Aug 02, 2022
Progressive Coordinate Transforms for Monocular 3D Object Detection

Progressive Coordinate Transforms for Monocular 3D Object Detection This repository is the official implementation of PCT. Introduction In this paper,

58 Nov 06, 2022
A library built upon PyTorch for building embeddings on discrete event sequences using self-supervision

pytorch-lifestream a library built upon PyTorch for building embeddings on discrete event sequences using self-supervision. It can process terabyte-si

Dmitri Babaev 103 Dec 17, 2022
Orange Chicken: Data-driven Model Generalizability in Crosslinguistic Low-resource Morphological Segmentation

Orange Chicken: Data-driven Model Generalizability in Crosslinguistic Low-resource Morphological Segmentation This repository contains code and data f

Zoey Liu 0 Jan 07, 2022
Prototypical Networks for Few shot Learning in PyTorch

Prototypical Networks for Few shot Learning in PyTorch Simple alternative Implementation of Prototypical Networks for Few Shot Learning (paper, code)

Orobix 835 Jan 08, 2023
Official PyTorch implementation of the preprint paper "Stylized Neural Painting", accepted to CVPR 2021.

Official PyTorch implementation of the preprint paper "Stylized Neural Painting", accepted to CVPR 2021.

Zhengxia Zou 1.5k Dec 28, 2022