DiffSinger: Singing Voice Synthesis via Shallow Diffusion Mechanism (SVS & TTS); AAAI 2022

Overview

DiffSinger: Singing Voice Synthesis via Shallow Diffusion Mechanism

arXiv

This repository is the official PyTorch implementation of our AAAI-2022 paper, in which we propose DiffSinger (for Singing-Voice-Synthesis) and DiffSpeech (for Text-to-Speech).

Besides, more detailed & improved code framework, which contains the implementations of FastSpeech 2, DiffSpeech and our NeurIPS-2021 work PortaSpeech is coming soon โœจ โœจ โœจ .

DiffSinger/DiffSpeech at training DiffSinger/DiffSpeech at inference
Training Inference

๐Ÿš€ News:

  • Dec.01, 2021: DiffSinger was accepted by AAAI-2022.
  • Sep.29, 2021: Our recent work PortaSpeech: Portable and High-Quality Generative Text-to-Speech was accepted by NeurIPS-2021 arXiv .
  • May.06, 2021: We submitted DiffSinger to Arxiv arXiv.

Environments

conda create -n your_env_name python=3.8
source activate your_env_name 
pip install -r requirements_2080.txt   (GPU 2080Ti, CUDA 10.2)
or pip install -r requirements_3090.txt   (GPU 3090, CUDA 11.4)

DiffSpeech (TTS version)

1. Data Preparation

a) Download and extract the LJ Speech dataset, then create a link to the dataset folder: ln -s /xxx/LJSpeech-1.1/ data/raw/

b) Download and Unzip the ground-truth duration extracted by MFA: tar -xvf mfa_outputs.tar; mv mfa_outputs data/processed/ljspeech/

c) Run the following scripts to pack the dataset for training/inference.

CUDA_VISIBLE_DEVICES=0 python data_gen/tts/bin/binarize.py --config configs/tts/lj/fs2.yaml

# `data/binary/ljspeech` will be generated.

2. Training Example

CUDA_VISIBLE_DEVICES=0 python tasks/run.py --config usr/configs/lj_ds_beta6.yaml --exp_name xxx --reset

3. Inference Example

CUDA_VISIBLE_DEVICES=0 python tasks/run.py --config usr/configs/lj_ds_beta6.yaml --exp_name xxx --reset --infer

We also provide:

  • the pre-trained model of DiffSpeech;
  • the pre-trained model of HifiGAN vocoder;
  • the individual pre-trained model of FastSpeech 2 for the shallow diffusion mechanism in DiffSpeech;

Remember to put the pre-trained models in checkpoints directory.

About the determination of 'k' in shallow diffusion: We recommend the trick introduced in Appendix B. We have already provided the proper 'k' for Ljspeech dataset in the config files.

DiffSinger (SVS version)

0. Data Acquirement

  • WIP. We will provide a form to apply for PopCS dataset.

1. Data Preparation

  • WIP. Similar to DiffSpeech.

2. Training Example

CUDA_VISIBLE_DEVICES=0 python tasks/run.py --config usr/configs/popcs_ds_beta6.yaml --exp_name xxx --reset
# or
CUDA_VISIBLE_DEVICES=0 python tasks/run.py --config usr/configs/popcs_ds_beta6_offline.yaml --exp_name xxx --reset

3. Inference Example

CUDA_VISIBLE_DEVICES=0 python tasks/run.py --config xxx --exp_name xxx --reset --infer

The pre-trained model for SVS will be provided recently.

Tensorboard

tensorboard --logdir_spec exp_name
Tensorboard

Mel Visualization

Along vertical axis, DiffSpeech: [0-80]; FastSpeech2: [80-160].

DiffSpeech vs. FastSpeech 2
DiffSpeech-vs-FastSpeech2
DiffSpeech-vs-FastSpeech2
DiffSpeech-vs-FastSpeech2

Audio Demos

Audio samples can be found in our demo page.

We also put part of the audio samples generated by DiffSpeech+HifiGAN (marked as [P]) and GTmel+HifiGAN (marked as [G]) of test set in resources/demos_1218.

(corresponding to the pre-trained model DiffSpeech)

Citation

@misc{liu2021diffsinger,
  title={DiffSinger: Singing Voice Synthesis via Shallow Diffusion Mechanism}, 
  author={Jinglin Liu and Chengxi Li and Yi Ren and Feiyang Chen and Zhou Zhao},
  year={2021},
  eprint={2105.02446},
  archivePrefix={arXiv},}

Acknowledgements

Our codes are based on the following repos:

Also thanks Keon Lee for fast implementation of our work.

Comments
  • DiffSinger infer problem

    DiffSinger infer problem

    I want to test opencpop preitrain model on unseen song. I don't know how to generate the wav file.

    1. What data I should prepare for model?
    2. How to do it? I saw test_step in FastSpeech2Task, but it seems for tts task. So I need override test_step in DiffSingerMIDITask? Is there other way to solve this? Without packing data into dataloader, just load model, and infer.
    opened by leon2milan 9
  • Inference with unseen songs

    Inference with unseen songs

    Hi. Since the DiffSinger(PopCS) needs ground-truth f0 information at inference, is it possible to synthesize an unseen song (with phoneme labels, phoneme duration and notes provided) using the DIffSinger(PopCS) model?

    opened by Charlottecuc 8
  • about some missing parts

    about some missing parts

    Hi, thanks for your contribution on DiffSinger! and also thanks for mentioning my implementation, I just realized it yesterday:)

    With your detailed documentation in README and paper, I can reproduce the training & inference procedure and the results with this repo. But during that, I found some missing parts to get the full training with shallow version: I think the current code only supports forced K (which is 71) with the pre-trained FastSpeech2 (especially of the decoder). If I understood correctly, we need a process for the boundary prediction and pre-training of FastSpeech2 before training DiffSpeech in shallow. Maybe I missed somewhere in the repo, but if it is not yet pushed, I wonder whether you have planned to provide that part soon or not.

    Thanks in advance!

    Best, keon

    solved 
    opened by keonlee9420 7
  • I can't get checkpoint files.

    I can't get checkpoint files.

    According to README-SVS-opencpop-cascade.md, I made my own datasets and tried training.

    CUDA_VISIBLE_DEVICES=0 python tasks/run.py --config usr/configs/midi/cascade/mydatasets/aux_rel.yaml --exp_name MY_DATASETS_FS_EXP --reset

    The training went to Epoch 50 but I didn't any checkpoint files. Which is the checkpoint file, or could anyone tell me which config should be changed to make checkpoint files (in shorter interval)?

    opened by nakasako 6
  • size mismatch for model.encoder_embed_tokens.weight: copying a param with shape torch.Size([62, 256]) from checkpoint, the shape in current model is torch.Size([57, 256]).

    size mismatch for model.encoder_embed_tokens.weight: copying a param with shape torch.Size([62, 256]) from checkpoint, the shape in current model is torch.Size([57, 256]).

    Having successfully run step 1, data preparation, I am now trying to run inference. I am using the given dataset preview. Running CUDA_VISIBLE_DEVICES=0 python tasks/run.py --config usr/configs/popcs_fs2.yaml --exp_name popcs_fs2_pmf0_1230 --reset --infer according to the readme.md, I end up with this error:

    | model Trainable Parameters: 24.253M
    Traceback (most recent call last):
      File "tasks/run.py", line 15, in <module>
        run_task()
      File "tasks/run.py", line 10, in run_task
        task_cls.start()
      File "/.../DiffSinger/tasks/base_task.py", line 258, in start
        trainer.test(task)
      File "/.../DiffSinger/utils/pl_utils.py", line 586, in test
        self.fit(model)
      File "/.../DiffSinger/utils/pl_utils.py", line 489, in fit
        self.run_pretrain_routine(model)
      File "/.../DiffSinger/utils/pl_utils.py", line 541, in run_pretrain_routine
        self.restore_weights(model)
      File "/.../DiffSinger/utils/pl_utils.py", line 617, in restore_weights
        self.restore_state_if_checkpoint_exists(model)
      File "/.../DiffSinger/utils/pl_utils.py", line 655, in restore_state_if_checkpoint_exists
        self.restore(last_ckpt_path, self.on_gpu)
      File "/.../DiffSinger/utils/pl_utils.py", line 668, in restore
        model.load_state_dict(checkpoint['state_dict'], strict=False)
      File "/.../envs/DiffSinger/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1223, in load_state_dict
        raise RuntimeError('Error(s) in loading state_dict for {}:\n\t{}'.format(
    RuntimeError: Error(s) in loading state_dict for FastSpeech2Task:
    	size mismatch for model.encoder_embed_tokens.weight: copying a param with shape torch.Size([62, 256]) from checkpoint, the shape in current model is torch.Size([57, 256]).
    	size mismatch for model.encoder.embed_tokens.weight: copying a param with shape torch.Size([62, 256]) from checkpoint, the shape in current model is torch.Size([57, 256]).
    

    Do you have any ideas on what could be wrong here and how to resolve it?

    solved 
    opened by ghost 6
  • The model takes the phoneme duration as input when inference?

    The model takes the phoneme duration as input when inference?

    Thanks for your wonderful work! I was running the inference of 0128_opencpop_ds58_midi, but there's a problem that bothers me.

    https://github.com/MoonInTheRiver/DiffSinger/blob/master/tasks/tts/fs2.py#L348

        ############
        # infer
        ############
        def test_step(self, sample, batch_idx):
            spk_embed = sample.get('spk_embed') if not hparams['use_spk_id'] else sample.get('spk_ids')
            txt_tokens = sample['txt_tokens']
            mel2ph, uv, f0 = None, None, None
            ref_mels = None
            if hparams['profile_infer']:
                pass
            else:
                if hparams['use_gt_dur']:
                    mel2ph = sample['mel2ph']
                if hparams['use_gt_f0']:
                    f0 = sample['f0']
                    uv = sample['uv']
                    print('Here using gt f0!!')
                if hparams.get('use_midi') is not None and hparams['use_midi']:
                    outputs = self.model(
                        txt_tokens, spk_embed=spk_embed, mel2ph=mel2ph, f0=f0, uv=uv, ref_mels=ref_mels, infer=True,
                        pitch_midi=sample['pitch_midi'], midi_dur=sample.get('midi_dur'), is_slur=sample.get('is_slur'))
                else:
                    outputs = self.model(
                        txt_tokens, spk_embed=spk_embed, mel2ph=mel2ph, f0=f0, uv=uv, ref_mels=ref_mels, infer=True)
    

    The param use_gt_dur is True, that is, the model takes the phoneme duration as input when inference. Is it correct?

    solved 
    opened by YawYoung 5
  • Why feed in f0  in the midi version

    Why feed in f0 in the midi version

    Hi @MoonInTheRiver ๏ผŒ

    In the midi version, why also feed in f0 and uv?

    f0 and uv is generated from raw wav, but during the infer, only txt_token and midi are given, how to get f0 and uv?

    opened by zhangsanfeng86 5
  • Using the Universal Vocoder

    Using the Universal Vocoder

    Hello! Can you please tell me if I can use your universal vocoder (trained on ~70 hours singing data) to get a DiffSinger (SVS) model by training on English data or do I need to train it from scratch on English data? If so, how can I do it? I want to get a model that synthesizes English singing without a Chinese accent. I want to make sure that there won't be any problems due to different phonemes.

    opened by ReyraV 3
  •  question about fs2 infer

    question about fs2 infer

    Hi, thank you very much for your valuable SVS corpus and code. I strictly follow your instruction until step "2. Training Example" for SVS, in https://github.com/MoonInTheRiver/DiffSinger . Then I am somewhat stuck here. The error message is: Validation sanity check: 0%| | 0/1 [00:00<?, ?batch/s] Traceback (most recent call last): File "tasks/run.py", line 19, in run_task() File "tasks/run.py", line 14, in run_task task_cls.start() File "/data/juicefs_speech_tts_v2/public_data/tts_public_data/11090357/singing/diffsinger/DiffSinger/tasks/base_task.py", line 256, in start trainer.fit(task) File "/data/juicefs_speech_tts_v2/public_data/tts_public_data/11090357/singing/diffsinger/DiffSinger/utils/pl_utils.py", line 489, in fit self.run_pretrain_routine(model) File "/data/juicefs_speech_tts_v2/public_data/tts_public_data/11090357/singing/diffsinger/DiffSinger/utils/pl_utils.py", line 565, in run_pretrain_routine self.evaluate(model, self.get_val_dataloaders(), self.num_sanity_val_steps, self.testing) File "/data/juicefs_speech_tts_v2/public_data/tts_public_data/11090357/singing/diffsinger/DiffSinger/utils/pl_utils.py", line 1173, in evaluate for batch_idx, batch in enumerate(dataloader): File "/root/miniconda3/envs/diffsinger/lib/python3.8/site-packages/torch/utils/data/dataloader.py", line 363, in next data = self._next_data() File "/root/miniconda3/envs/diffsinger/lib/python3.8/site-packages/torch/utils/data/dataloader.py", line 989, in _next_data return self._process_data(data) File "/root/miniconda3/envs/diffsinger/lib/python3.8/site-packages/torch/utils/data/dataloader.py", line 1014, in _process_data data.reraise() File "/root/miniconda3/envs/diffsinger/lib/python3.8/site-packages/torch/_utils.py", line 395, in reraise raise self.exc_type(msg) FileNotFoundError: Caught FileNotFoundError in DataLoader worker process 0. Original Traceback (most recent call last): File "/root/miniconda3/envs/diffsinger/lib/python3.8/site-packages/torch/utils/data/_utils/worker.py", line 185, in _worker_loop data = fetcher.fetch(index) File "/root/miniconda3/envs/diffsinger/lib/python3.8/site-packages/torch/utils/data/_utils/fetch.py", line 44, in fetch data = [self.dataset[idx] for idx in possibly_batched_index] File "/root/miniconda3/envs/diffsinger/lib/python3.8/site-packages/torch/utils/data/_utils/fetch.py", line 44, in data = [self.dataset[idx] for idx in possibly_batched_index] File "/data/juicefs_speech_tts_v2/public_data/tts_public_data/11090357/singing/diffsinger/DiffSinger/usr/diffsinger_task.py", line 93, in getitem fs2_mel = torch.Tensor(np.load(f'{fs2_ckpt}/P_mels_npy/{item_name}.npy')) # ~M generated by FFT-singer. File "/root/miniconda3/envs/diffsinger/lib/python3.8/site-packages/numpy/lib/npyio.py", line 416, in load fid = stack.enter_context(open(os_fspath(file), "rb")) FileNotFoundError: [Errno 2] No such file or directory: 'checkpoints/popcs_fs2_pmf0_1230/P_mels_npy/popcs-่ฏดๆ•ฃๅฐฑๆ•ฃ-0000.npy' It seems that the required file is not properly process in "1. Data Preparation" step, though the first step was passed successfully with the following prompt: test_input_dir: , test_num: 0, test_prefixes: ['popcs-่ฏดๆ•ฃๅฐฑๆ•ฃ', 'popcs-้šๅฝข็š„็ฟ…่†€'], test_set_name: test, timesteps: 100, train_set_name: train, use_denoise: False, use_energy_embed: False, use_gt_dur: True, use_gt_f0: True, use_nsf: True, use_pitch_embed: True, use_pos_embed: True, use_spk_embed: False, use_spk_id: False, use_split_spk_id: False, use_uv: True, use_var_enc: False, val_check_interval: 2000, valid_num: 0, valid_set_name: valid, validate: False, vocoder: vocoders.hifigan.HifiGAN, vocoder_ckpt: checkpoints/0109_hifigan_bigpopcs_hop128, warmup_updates: 2000, weight_decay: 0, win_size: 512, work_dir: , | Binarizer: <class 'data_gen.singing.binarize.SingingBinarizer'> | spk_map: {'SPK1': 0} | Build phone set: ['', '', '', 'a', 'ai', 'an', 'ang', 'ao', 'b', 'c', 'ch', 'd', 'e', 'ei', 'en', 'eng', 'er', 'f', 'g', 'h', 'i', 'ia', 'ian', 'iang', 'iao', 'ie', 'in', 'ing', 'iong', 'iou', 'j', 'k', 'l', 'm', 'n', 'o', 'ong', 'ou', 'p', 'q', 'r', 's', 'sh', 't', 'u', 'ua', 'uai', 'uan', 'uang', 'uei', 'uen', 'uo', 'v', 'van', 've', 'vn', 'x', 'z', 'zh', '|'] 100%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ| 27/27 [00:13<00:00, 2.01it/s] | valid total duration: 330.677s 100%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ| 27/27 [00:13<00:00, 2.04it/s] | test total duration: 330.677s 100%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ| 1624/1624 [11:55<00:00, 2.27it/s] | train total duration: 20878.560s I guess the output of Step 1 and input of Step 2 are possibly not chained perfectly. Any help or hints will be welcome. Thank you in advance.

    Yes, you are right. There is a problem. You need run "CUDA_VISIBLE_DEVICES=0 python tasks/run.py --config usr/configs/popcs_fs2.yaml --exp_name popcs_fs2_pmf0_1230 --reset --infer" in advance to produce the files "P_mels_npy". I have fixed the readme file. Thanks for your report!

    I have a question about it, if we are training from scratch and we don't have any saved models for inference, how does the P_mels_npy(predicted mels I guess) generated?

    Originally posted by @Cescfangs in https://github.com/MoonInTheRiver/DiffSinger/issues/11#issuecomment-1038568795

    opened by Cescfangs 3
  • Data Preparation not working?

    Data Preparation not working?

    Thank you for sharing this project! I am trying to run inference on a pre-trained model (DiffSinger), following the directions in the README. I have downloaded your dataset preview and trained models. I have tried both using a symlink to the dataset as instructed and also placing everything in data/processed/popcs/ directly.

    At step 1, packing the dataset, I seem to run into a problem:

    (DiffSinger) [email protected]:~/.../DiffSinger$ CUDA_VISIBLE_DEVICES=0 python data_gen/tts/bin/binarize.py --config usr/configs/popcs_ds_beta6.yaml
    
    | Hparams chains:  ['configs/config_base.yaml', 'configs/tts/base.yaml', 'configs/tts/fs2.yaml', 'configs/tts/base_zh.yaml', 'configs/singing/base.yaml', 'usr/configs/base.yaml', 'usr/configs/popcs_ds_beta6.yaml']
    | Hparams: 
    K_step: 51, accumulate_grad_batches: 1, audio_num_mel_bins: 80, audio_sample_rate: 24000, base_config: ['configs/tts/fs2.yaml', 'configs/singing/base.yaml', './base.yaml'], 
    binarization_args: {'shuffle': False, 'with_txt': True, 'with_wav': True, 'with_align': True, 'with_spk_embed': False, 'with_f0': True, 'with_f0cwt': True}, binarizer_cls: data_gen.singing.binarize.SingingBinarizer, binary_data_dir: data/binary/popcs-pmf0, check_val_every_n_epoch: 10, clip_grad_norm: 1, 
    content_cond_steps: [], cwt_add_f0_loss: False, cwt_hidden_size: 128, cwt_layers: 2, cwt_loss: l1, 
    cwt_std_scale: 0.8, datasets: ['popcs'], debug: False, dec_ffn_kernel_size: 9, dec_layers: 4, 
    decay_steps: 50000, decoder_type: fft, dict_dir: , diff_decoder_type: wavenet, diff_loss_type: l1, 
    dilation_cycle_length: 1, dropout: 0.1, ds_workers: 4, dur_enc_hidden_stride_kernel: ['0,2,3', '0,2,3', '0,1,3'], dur_loss: mse, 
    dur_predictor_kernel: 3, dur_predictor_layers: 2, enc_ffn_kernel_size: 9, enc_layers: 4, encoder_K: 8, 
    encoder_type: fft, endless_ds: True, ffn_act: gelu, ffn_padding: SAME, fft_size: 512, 
    fmax: 12000, fmin: 30, fs2_ckpt: , gen_dir_name: , gen_tgt_spk_id: -1, 
    hidden_size: 256, hop_size: 128, infer: False, keep_bins: 80, lambda_commit: 0.25, 
    lambda_energy: 0.0, lambda_f0: 0.0, lambda_ph_dur: 0.0, lambda_sent_dur: 0.0, lambda_uv: 0.0, 
    lambda_word_dur: 0.0, load_ckpt: , log_interval: 100, loud_norm: False, lr: 0.001, 
    max_beta: 0.06, max_epochs: 1000, max_eval_sentences: 1, max_eval_tokens: 60000, max_frames: 5000, 
    max_input_tokens: 1550, max_sentences: 48, max_tokens: 20000, max_updates: 160000, mel_loss: ssim:0.5|l1:0.5, 
    mel_vmax: 1.5, mel_vmin: -6, min_level_db: -120, norm_type: gn, num_ckpt_keep: 3, 
    num_heads: 2, num_sanity_val_steps: 1, num_spk: 1, num_test_samples: 0, num_valid_plots: 10, 
    optimizer_adam_beta1: 0.9, optimizer_adam_beta2: 0.98, out_wav_norm: False, pitch_ar: False, pitch_enc_hidden_stride_kernel: ['0,2,5', '0,2,5', '0,2,5'], 
    pitch_extractor: parselmouth, pitch_loss: l1, pitch_norm: log, pitch_type: frame, pre_align_args: {'use_tone': False, 'forced_align': 'mfa', 'use_sox': True, 'txt_processor': 'zh_g2pM', 'allow_no_txt': False, 'denoise': False}, 
    pre_align_cls: data_gen.singing.pre_align.SingingPreAlign, predictor_dropout: 0.5, predictor_grad: 0.0, predictor_hidden: -1, predictor_kernel: 5, 
    predictor_layers: 2, prenet_dropout: 0.5, prenet_hidden_size: 256, pretrain_fs_ckpt: , processed_data_dir: data/processed/popcs, 
    profile_infer: False, raw_data_dir: data/raw/popcs, ref_norm_layer: bn, reset_phone_dict: True, residual_channels: 256, 
    residual_layers: 20, save_best: False, save_ckpt: True, save_codes: ['configs', 'modules', 'tasks', 'utils', 'usr'], save_f0: True, 
    save_gt: False, schedule_type: linear, seed: 1234, sort_by_len: True, spec_max: [0.2645, 0.0583, -0.2344, -0.0184, 0.1227, 0.1533, 0.1103, 0.1212, 0.2421, 0.1809, 0.2134, 0.3161, 0.3301, 0.3289, 0.2667, 0.2421, 0.2581, 0.26, 0.1394, 0.1907, 0.1082, 0.1474, 0.168, 0.255, 0.1057, 0.0826, 0.0423, 0.1203, -0.0701, -0.0056, 0.0477, -0.0639, -0.0272, -0.0728, -0.1648, -0.0855, -0.2652, -0.1998, -0.1547, -0.2167, -0.4181, -0.5463, -0.4161, -0.4733, -0.6518, -0.5387, -0.429, -0.4191, -0.4151, -0.3042, -0.381, -0.416, -0.4496, -0.2847, -0.4676, -0.4658, -0.4931, -0.4885, -0.5547, -0.5481, -0.6948, -0.7968, -0.8455, -0.8392, -0.877, -0.952, -0.8749, -0.7297, -0.8374, -0.8667, -0.7157, -0.9035, -0.9219, -0.8801, -0.9298, -0.9009, -0.9604, -1.0537, -1.0781, -1.3766], 
    spec_min: [-6.8276, -7.027, -6.8142, -7.1429, -7.6669, -7.6, -7.1148, -6.964, -6.8414, -6.6596, -6.688, -6.7439, -6.7986, -7.494, -7.7845, -7.6586, -6.9288, -6.7639, -6.9118, -6.8246, -6.7183, -7.1769, -6.9794, -7.4513, -7.3422, -7.5623, -6.961, -6.8158, -6.9595, -6.8403, -6.5688, -6.6356, -7.0209, -6.5002, -6.7819, -6.5232, -6.6927, -6.5701, -6.5531, -6.7069, -6.6462, -6.4523, -6.5954, -6.4264, -6.4487, -6.707, -6.4025, -6.3042, -6.4008, -6.3857, -6.3903, -6.3094, -6.2491, -6.3518, -6.3566, -6.4168, -6.2481, -6.3624, -6.2858, -6.2575, -6.3638, -6.452, -6.1835, -6.2754, -6.1253, -6.1645, -6.0638, -6.1262, -6.071, -6.1039, -6.4428, -6.1363, -6.1054, -6.1252, -6.1797, -6.0235, -6.0758, -5.9453, -6.0213, -6.0446], spk_cond_steps: [], stop_token_weight: 5.0, task_cls: usr.diffsinger_task.DiffSingerTask, test_ids: [], 
    test_input_dir: , test_num: 0, test_prefixes: ['popcs-่ฏดๆ•ฃๅฐฑๆ•ฃ', 'popcs-้šๅฝข็š„็ฟ…่†€'], test_set_name: test, timesteps: 100, 
    train_set_name: train, use_denoise: False, use_energy_embed: False, use_gt_dur: True, use_gt_f0: True, 
    use_nsf: True, use_pitch_embed: True, use_pos_embed: True, use_spk_embed: False, use_spk_id: False, 
    use_split_spk_id: False, use_uv: True, use_var_enc: False, val_check_interval: 2000, valid_num: 0, 
    valid_set_name: valid, validate: False, vocoder: vocoders.hifigan.HifiGAN, vocoder_ckpt: checkpoints/0109_hifigan_bigpopcs_hop128, warmup_updates: 2000, 
    weight_decay: 0, win_size: 512, work_dir: , 
    | Binarizer:  <class 'data_gen.singing.binarize.SingingBinarizer'>
    | spk_map:  {}
    | Build phone set:  []
    0it [00:00, ?it/s]
    | valid total duration: 0.000s
    0it [00:00, ?it/s]
    | test total duration: 0.000s
    0it [00:00, ?it/s]
    | train total duration: 0.000s
    

    It creates the folder data/binary/popcs-pmf0 with 11 files, but they seem to be essentially empty. Can you please tell what I am missing, why it does not find or use the dataset?

    solved 
    opened by ghost 3
  • Determining the durations of segmentation operators (|)

    Determining the durations of segmentation operators (|)

    The MFA outputs don't really provide the durations/frames between the words, and I checked that this project uses the duration of the SEG token (word separator). It is many times 0 and other times not, so I wanted to ask how did you get that on preprocessing step?

    solved 
    opened by PranjalyaDS 3
  • RuntimeError: index 155 is out of bounds for dimension 1 with size 155

    RuntimeError: index 155 is out of bounds for dimension 1 with size 155

    I try to run training on my dataset. Valid data is processed correctly and this error does not occur at this stage. But when training data is used, a RuntimeError always occurs. I tried to analyze the tensors, look at their sizes, but there are no ideas, because they are identical to the valid ones. The only thing I noticed is that I have a lot of zero tensors at the end. But I'm not sure that this is an important point. Valid data was taken randomly of course. In fact, this part of code works correctly for valid data, but does not work for training data:

    torch.gather(F.pad(encoder_out, [0, 0, 1, 0]), 1, mel2ph)

    Please help, I would be glad to any ideas to solve this problem! image

    https://github.com/MoonInTheRiver/DiffSinger/blob/5f2f6eb3c42635f9446363a302602a2ef1d41d70/modules/diffsinger_midi/fs2.py#L100

    opened by ReyraV 4
  • Hello, I have issue as I try to use another english dataset. And I'm wondering why Inference from packed test set can work (`CUDA_VISIBLE_DEVICES=0 python tasks/run.py --config usr/configs/midi/e2e/opencpop/ds100_adj_rel.yaml --exp_name $MY_DS_EXP_NAME --reset --infer`) but inference model from raw input (`python inference/svs/ds_e2e.py --config usr/configs/midi/e2e/opencpop/ds100_adj_rel.yaml --exp_name $MY_DS_EXP_NAME`) needs same phoneme set size?

    Hello, I have issue as I try to use another english dataset. And I'm wondering why Inference from packed test set can work (`CUDA_VISIBLE_DEVICES=0 python tasks/run.py --config usr/configs/midi/e2e/opencpop/ds100_adj_rel.yaml --exp_name $MY_DS_EXP_NAME --reset --infer`) but inference model from raw input (`python inference/svs/ds_e2e.py --config usr/configs/midi/e2e/opencpop/ds100_adj_rel.yaml --exp_name $MY_DS_EXP_NAME`) needs same phoneme set size?

        Hello, I have issue as I try to use another english dataset. And I'm wondering why Inference from packed test set can work (`CUDA_VISIBLE_DEVICES=0 python tasks/run.py --config usr/configs/midi/e2e/opencpop/ds100_adj_rel.yaml --exp_name $MY_DS_EXP_NAME --reset --infer`) but inference model from raw input (`python inference/svs/ds_e2e.py --config usr/configs/midi/e2e/opencpop/ds100_adj_rel.yaml --exp_name $MY_DS_EXP_NAME`) needs same phoneme set size?
    

    Originally posted by @Wayne-wonderai in https://github.com/MoonInTheRiver/DiffSinger/issues/29#issuecomment-1260673475

    opened by michaellin99999 13
  • custom phone_set file

    custom phone_set file

    Hi, with data preview we have create 72 phonemes, is there a way to train the model such that it doesn't use the existing phone_set file with 62 phonemes and can use up to 72 phonemes?

    Thanks

    opened by michaellin99999 1
  • decoder part in e2e trainning using opencpop dataset

    decoder part in e2e trainning using opencpop dataset

    In the e2e trainning mode of opencpop, skip_decoder is true and the decoder part is not trainned at all, right? But in the inference, you still use run_decoder to get mel_out and use it as a start for q_sample, right? Why run_decoder can also used here?

    Is that why you use k=60 in cascade mode but k=1000 in e2e mode?

    opened by Liujingxiu23 0
Owner
Jinglin Liu
Jinglin Liu
Application to help find best train itinerary, uses speech to text, has a spam filter to segregate invalid inputs, NLP and Pathfinding algos.

T-IAI-901-MSC2022 - GROUP 18 Gestion de projet Notre travail a รฉtรฉ organisรฉ et rรฉparti dans un Trello. https://trello.com/b/X3s2fpPJ/ia-projet Install

1 Feb 05, 2022
Beyond Masking: Demystifying Token-Based Pre-Training for Vision Transformers

beyond masking Beyond Masking: Demystifying Token-Based Pre-Training for Vision Transformers The code is coming Figure 1: Pipeline of token-based pre-

Yunjie Tian 23 Sep 27, 2022
๐Ÿ– Easy training and deployment of seq2seq models.

Headliner Headliner is a sequence modeling library that eases the training and in particular, the deployment of custom sequence models for both resear

Axel Springer Ideas Engineering GmbH 231 Nov 18, 2022
Official code for "Parser-Free Virtual Try-on via Distilling Appearance Flows", CVPR 2021

Parser-Free Virtual Try-on via Distilling Appearance Flows, CVPR 2021 Official code for CVPR 2021 paper 'Parser-Free Virtual Try-on via Distilling App

395 Jan 03, 2023
[EMNLP 2021] LM-Critic: Language Models for Unsupervised Grammatical Error Correction

LM-Critic: Language Models for Unsupervised Grammatical Error Correction This repo provides the source code & data of our paper: LM-Critic: Language M

Michihiro Yasunaga 98 Nov 24, 2022
Local cross-platform machine translation GUI, based on CTranslate2

DesktopTranslator Local cross-platform machine translation GUI, based on CTranslate2 Download Windows Installer You can either download a ready-made W

Yasmin Moslem 29 Jan 05, 2023
Anomaly Detection ์ด์ƒ์น˜ ํƒ์ง€ ์ „์ฒ˜๋ฆฌ ๋ชจ๋“ˆ

Anomaly Detection ์‹œ๊ณ„์—ด ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•œ ์ด์ƒ์น˜ ํƒ์ง€ 1. Kernel Density Estimation์„ ํ™œ์šฉํ•œ ์ด์ƒ์น˜ ํƒ์ง€ train_data_path์™€ test_data_path์— ์กด์žฌํ•˜๋Š” ์‹œ์  ์ •๋ณด๋ฅผ ํฌํ•จํ•˜๊ณ  ์žˆ๋Š” csv ํ˜•ํƒœ์˜ train data์™€

CLUST-consortium 43 Nov 28, 2022
Active learning for text classification in Python

Active Learning allows you to efficiently label training data in a small-data scenario.

Webis 375 Dec 28, 2022
StarGAN - Official PyTorch Implementation

StarGAN - Official PyTorch Implementation ***** New: StarGAN v2 is available at https://github.com/clovaai/stargan-v2 ***** This repository provides t

Yunjey Choi 5.1k Dec 30, 2022
Implementation of Natural Language Code Search in the project CodeBERT: A Pre-Trained Model for Programming and Natural Languages.

CodeBERT-Implementation In this repo we have replicated the paper CodeBERT: A Pre-Trained Model for Programming and Natural Languages. We are interest

Tanuj Sur 4 Jul 01, 2022
Convolutional 2D Knowledge Graph Embeddings resources

ConvE Convolutional 2D Knowledge Graph Embeddings resources. Paper: Convolutional 2D Knowledge Graph Embeddings Used in the paper, but do not use thes

Tim Dettmers 586 Dec 24, 2022
This repository implements a brute-force spellchecker utilizing the Damerau-Levenshtein edit distance.

About spellchecker.py Implementing a highly-accurate, brute-force, and dynamically programmed spellchecking program that utilizes the Damerau-Levensht

Raihan Ahmed 1 Dec 11, 2021
In this repository we have tested 3 VQA models on the ImageCLEF-2019 dataset.

Med-VQA In this repository we have tested 3 VQA models on the ImageCLEF-2019 dataset. Two of these are made on top of Facebook AI Reasearch's Multi-Mo

Kshitij Ambilduke 8 Apr 14, 2022
Easy Language Model Pretraining leveraging Huggingface's Transformers and Datasets

Easy Language Model Pretraining leveraging Huggingface's Transformers and Datasets What is LASSL โ€ข How to Use What is LASSL LASSL์€ LAnguage Semi-Super

LASSL: LAnguage Self-Supervised Learning 116 Dec 27, 2022
This is the code for the EMNLP 2021 paper AEDA: An Easier Data Augmentation Technique for Text Classification

The baseline code is for EDA: Easy Data Augmentation techniques for boosting performance on text classification tasks

Akbar Karimi 81 Dec 09, 2022
iBOT: Image BERT Pre-Training with Online Tokenizer

Image BERT Pre-Training with iBOT Official PyTorch implementation and pretrained models for paper iBOT: Image BERT Pre-Training with Online Tokenizer.

Bytedance Inc. 435 Jan 06, 2023
PyTorch Language Model for 1-Billion Word (LM1B / GBW) Dataset

PyTorch Large-Scale Language Model A Large-Scale PyTorch Language Model trained on the 1-Billion Word (LM1B) / (GBW) dataset Latest Results 39.98 Perp

Ryan Spring 114 Nov 04, 2022
Partially offline multi-language translator built upon Huggingface transformers.

Translate Command-line interface to translation pipelines, powered by Huggingface transformers. This tool can download translation models, and then us

Richard Jarry 8 Oct 25, 2022
Beyond Accuracy: Behavioral Testing of NLP models with CheckList

CheckList This repository contains code for testing NLP Models as described in the following paper: Beyond Accuracy: Behavioral Testing of NLP models

Marco Tulio Correia Ribeiro 1.8k Dec 28, 2022
่‡ช็„ถ่จ€่ชžใงๆ›ธใ‹ใ‚ŒใŸๆ™‚้–“ๆƒ…ๅ ฑ่กจ็พใ‚’ๆŠฝๅ‡บ/่ฆๆ ผๅŒ–ใ™ใ‚‹ใƒซใƒผใƒซใƒ™ใƒผใ‚นใฎ่งฃๆžๅ™จ

ja-timex ่‡ช็„ถ่จ€่ชžใงๆ›ธใ‹ใ‚ŒใŸๆ™‚้–“ๆƒ…ๅ ฑ่กจ็พใ‚’ๆŠฝๅ‡บ/่ฆๆ ผๅŒ–ใ™ใ‚‹ใƒซใƒผใƒซใƒ™ใƒผใ‚นใฎ่งฃๆžๅ™จ ๆฆ‚่ฆ ja-timex ใฏใ€็พไปฃๆ—ฅๆœฌ่ชžใงๆ›ธใ‹ใ‚ŒใŸ่‡ช็„ถๆ–‡ใซๅซใพใ‚Œใ‚‹ๆ™‚้–“ๆƒ…ๅ ฑ่กจ็พใ‚’ๆŠฝๅ‡บใ—TIMEX3ใจๅ‘ผใฐใ‚Œใ‚‹ใ‚ขใƒŽใƒ†ใƒผใ‚ทใƒงใƒณไป•ๆง˜ใซๅค‰ๆ›ใ™ใ‚‹ใ“ใจใงใ€ใƒ—ใƒญใ‚ฐใƒฉใƒ ใŒๅˆฉ็”จใงใใ‚‹ใ‚ˆใ†ใชๅฝขใซ่ฆๆ ผๅŒ–ใ™ใ‚‹ใƒซใƒผใƒซใƒ™ใƒผใ‚นใฎ่งฃๆžๅ™จใงใ™ใ€‚

Yuki Okuda 116 Nov 09, 2022