Code and data for "Broaden the Vision: Geo-Diverse Visual Commonsense Reasoning" (EMNLP 2021).

Related tags

Deep LearningGD-VCR
Overview

GD-VCR

Code for Broaden the Vision: Geo-Diverse Visual Commonsense Reasoning (EMNLP 2021).

Research Questions and Aims:

  1. How well can a model perform on the images which requires geo-diverse commonsense to understand?
  2. What are the reasons behind performance disparity on Western and non-Western images?
  3. We aim to broaden researchers' vision on a realistic issue existing all over the world, and call upon researchers to consider more inclusive commonsense knowledge and better model transferability on various cultures.

In this repo, GD-VCR dataset and codes about 1) general model evaluation, 2) detailed controlled experiments, and 3) dataset construction are provided.

Repo Structure

GD-VCR
 ├─X_VCR				  --> storing GD-VCR/VCR data
 ├─configs
 │  └─vcr
 │     └─fine-tune-qa.json		  --> part of configs for evaluation
 ├─dataloaders
 │  └─vcr.py			          --> load GD-VCR/VCR data based on configs
 ├─models
 │  └─train.py		                  --> fine-tune/evaluate models
 │
 ├─val.jsonl			          --> GD-VCR dataset
 ├─val_addition_single.jsonl		  --> additional low-order QA pairs

GD-VCR dataset

First download the original VCR dataset to X_VCR:

cd X_VCR
wget https://s3.us-west-2.amazonaws.com/ai2-rowanz/vcr1annots.zip
wget https://s3.us-west-2.amazonaws.com/ai2-rowanz/vcr1images.zip
unzip vcr1annots.zip
unzip vcr1images.zip

Then download the GD-VCR dataset to X_VCR:

cd X_VCR
mv val.jsonl orig_val.jsonl
wget https://gdvcr.s3.us-west-1.amazonaws.com/MC-VCR_sample.zip
unzip MC-VCR_sample.zip

cd ..
mv val.jsonl X_VCR/
mv val_addition_single.jsonl X_VCR/

The detailed items in our GD-VCR dataset are almost the same as VCR. Please refer to VCR website for detailed explanations.

VisualBERT

Prepare Environment

Prepare environment as mentioned in the original repo of VisualBERT.

Fine-tune model on original VCR

Download the task-specific pre-trained checkpoint on original VCR vcr_pre_train.th to GD-VCR/visualbert/trained_models.

Then, use the command to fine-tune:

export PYTHONPATH=$PYTHONPATH:GD-VCR/visualbert/
export PYTHONPATH=$PYTHONPATH:GD-VCR/

cd GD-VCR/visualbert/models

CUDA_VISIBLE_DEVICES=0 python train.py -folder ../trained_models -config ../configs/vcr/fine-tune-qa.json

For convenience, we provide a trained checkpoint [Link] for quick evaluation.

Evaluation on GD-VCR

CUDA_VISIBLE_DEVICES=0 python train.py -folder ../trained_models -config ../configs/vcr/eval.json \
        [-region REGION] \
        [-scene SCENE] \
        [-single_or_multiple SINGLE_OR_MULTIPLE] \
        [-orig_or_new ORIG_OR_NEW] \
	[-addition_annotation_analysis] \
        [-grounding]

Here are the explanations of several important attributions:

  • REGION: One of the regions west, east-asia, south-asia, africa.
  • SCENE: One of the scenario (e.g., wedding).
  • SINGLE_OR_MULTIPLE: Whether studying single(low-order) or multiple(high-order) cognitive questions.
  • addition_annotation_analysis: Whether studying GD-VCR or additional annotated questions. If yes, you can choose to set SINGLE_OR_MULTIPLE to specify which types of questions you want to investigate.
  • ORIG_OR_NEW: Whether studying GD-VCR or original VCR dev set.
  • grounding: Whether analyzing grounding results by visualizing attention weights.

Given our fine-tuned VisualBERT model above, the evaluation results are shown below:

Models Overall West South Asia East Asia Africa
VisualBERT 53.27 **62.91** 52.04 45.39 51.85

ViLBERT

Prepare Environment

Prepare environment as mentioned in the original repo of ViLBERT.

Extract image features

We make use of the docker made for LXMERT. Detailed commands are shown below:

cd GD-VCR
git clone https://github.com/jiasenlu/bottom-up-attention.git
mv generate_tsv.py bottom-up-attention/tools
mv generate_tsv_gt.py bottom-up-attention/tools

docker pull airsplay/bottom-up-attention
docker run --name gd_vcr --runtime=nvidia -it -v /PATH/TO/:/PATH/TO/ airsplay/bottom-up-attention /bin/bash
[Used to enter into the docker]

cd /PATH/TO/GD-VCR/bottom-up-attention
pip install json_lines
pip install jsonlines
pip install python-dateutil==2.5.0

python ./tools/generate_tsv.py --cfg experiments/cfgs/faster_rcnn_end2end_resnet.yml --def models/vg/ResNet-101/faster_rcnn_end2end_final/test.prototxt --out ../vilbert_beta/feature/VCR/VCR_resnet101_faster_rcnn_genome.tsv --net data/faster_rcnn_models/resnet101_faster_rcnn_final.caffemodel --total_group 1 --group_id 0 --split VCR
python ./tools/generate_tsv_gt.py --cfg experiments/cfgs/faster_rcnn_end2end_resnet.yml --def models/vg/ResNet-101/faster_rcnn_end2end_final/test_gt.prototxt --out ../vilbert_beta/feature/VCR/VCR_gt_resnet101_faster_rcnn_genome.tsv --net data/faster_rcnn_models/resnet101_faster_rcnn_final.caffemodel --total_group 1 --group_id 0 --split VCR_gt
[Used to extract features]

Then, exit the dockerfile, and convert extracted features into lmdb form:

cd GD-VCR/vilbert_beta
python script/convert_lmdb_VCR.py
python script/convert_lmdb_VCR_gt.py

Fine-tune model on original VCR

Download the pre-trained checkpoint to GD-VCR/vilbert_beta/save/bert_base_6_layer_6_connect_freeze_0/.

Then, use the command to fine-tune:

cd GD-VCR/vilbert_beta
python -m torch.distributed.launch --nproc_per_node=8 --nnodes=1 --node_rank=0 train_tasks.py --bert_model bert-base-uncased --from_pretrained save/bert_base_6_layer_6_connect_freeze_0/pytorch_model_8.bin  --config_file config/bert_base_6layer_6conect.json  --learning_rate 2e-5 --num_workers 16 --tasks 1-2 --save_name pretrained

For convenience, we provide a trained checkpoint [Link] for quick evaluation.

Evaluation on GD-VCR

CUDA_VISIBLE_DEVICES=0,1 python eval_tasks.py 
		--bert_model bert-base-uncased 
		--from_pretrained save/VCR_Q-A-VCR_QA-R_bert_base_6layer_6conect-pretrained/vilbert_best.bin 
		--config_file config/bert_base_6layer_6conect.json --task 1 --split val  --batch_size 16

Note that if you want the results on original VCR dev set, you could directly change the "val_annotations_jsonpath" value of TASK1 to X_VCR/orig_val.jsonl.

Given our fine-tuned ViLBERT model above, the evaluation results are shown below:

Models Overall West South Asia East Asia Africa
ViLBERT 58.47 **65.82** 62.90 46.45 62.04

Dataset Construction

Here we provide dataset construction methods in our paper:

  • similarity.py: Compute the similarity among answer candidates and distribute candidates to each annotated questions.
  • relevance_model.py: Train a model to compute the relevance between question and answer.
  • question_cluster.py: Infer question templates from original VCR dataset as the basis of annotation.

For sake of convenience, we provide the trained relevance computation model [Link].

Acknowledgement

We thank for VisualBERT, ViLBERT, and Detectron authors' implementation. Also, we appreciate the effort of original VCR paper's author, and our work is highly influenced by VCR.

Citation

Please cite our EMNLP paper if this repository inspired your work.

@inproceedings{yin2021broaden,
  title = {Broaden the Vision: Geo-Diverse Visual Commonsense Reasoning},
  author = {Yin, Da and Li, Liunian Harold and Hu, Ziniu and Peng, Nanyun and Chang, Kai-Wei},
  booktitle = {EMNLP},
  year = {2021}
}
Owner
Da Yin
Da Yin
A neuroanatomy-based augmented reality experience powered by computer vision. Features 3D visuals of the Atlas Brain Map slices.

Brain Augmented Reality (AR) A neuroanatomy-based augmented reality experience powered by computer vision that features 3D visuals of the Atlas Brain

Yasmeen Brain 10 Oct 06, 2022
GLM (General Language Model)

GLM GLM is a General Language Model pretrained with an autoregressive blank-filling objective and can be finetuned on various natural language underst

THUDM 421 Jan 04, 2023
Multi-Scale Geometric Consistency Guided Multi-View Stereo

ACMM [News] The code for ACMH is released!!! [News] The code for ACMP is released!!! About ACMM is a multi-scale geometric consistency guided multi-vi

Qingshan Xu 118 Jan 04, 2023
RIFE: Real-Time Intermediate Flow Estimation for Video Frame Interpolation

RIFE - Real Time Video Interpolation arXiv | YouTube | Colab | Tutorial | Demo Table of Contents Introduction Collection Usage Evaluation Training and

hzwer 3k Jan 04, 2023
The sixth place winning solution (6/220) in 2021 Gaofen Challenge.

SwinTransformer + OBBDet The sixth place winning solution (6/220) in the track of Fine-grained Object Recognition in High-Resolution Optical Images, 2

ming71 46 Dec 02, 2022
HHP-Net: A light Heteroscedastic neural network for Head Pose estimation with uncertainty

HHP-Net: A light Heteroscedastic neural network for Head Pose estimation with uncertainty Giorgio Cantarini, Francesca Odone, Nicoletta Noceti, Federi

18 Aug 02, 2022
Nonnegative spatial factorization for multivariate count data

Nonnegative spatial factorization for multivariate count data This repository contains supporting code to facilitate reproducible analysis. For detail

Will Townes 24 Dec 19, 2022
Multi-Agent Reinforcement Learning for Active Voltage Control on Power Distribution Networks (MAPDN)

Multi-Agent Reinforcement Learning for Active Voltage Control on Power Distribution Networks (MAPDN) This is the implementation of the paper Multi-Age

Future Power Networks 83 Jan 06, 2023
Code for the paper "M2m: Imbalanced Classification via Major-to-minor Translation" (CVPR 2020)

M2m: Imbalanced Classification via Major-to-minor Translation This repository contains code for the paper "M2m: Imbalanced Classification via Major-to

79 Oct 13, 2022
Official Code Release for "TIP-Adapter: Training-free clIP-Adapter for Better Vision-Language Modeling"

Official Code Release for "TIP-Adapter: Training-free clIP-Adapter for Better Vision-Language Modeling" Pipeline of Tip-Adapter Tip-Adapter can provid

peng gao 187 Dec 28, 2022
Vehicle detection using machine learning and computer vision techniques for Udacity's Self-Driving Car Engineer Nanodegree.

Vehicle Detection Video demo Overview Vehicle detection using these machine learning and computer vision techniques. Linear SVM HOG(Histogram of Orien

hata 1.1k Dec 18, 2022
Pytorch Implementation of Various Point Transformers

Pytorch Implementation of Various Point Transformers Recently, various methods applied transformers to point clouds: PCT: Point Cloud Transformer (Men

Neil You 434 Dec 30, 2022
A user-friendly research and development tool built to standardize RL competency assessment for custom agents and environments.

Built with ❤️ by Sam Showalter Contents Overview Installation Dependencies Usage Scripts Standard Execution Environment Development Environment Benchm

SRI-AIC 1 Nov 18, 2021
CS506-Spring2022 - Code and Slides for Boston University CS 506

CS 506 - Computational Tools for Data Science Code, slides, and notes for Boston

Lance Galletti 17 May 06, 2022
MAVE: : A Product Dataset for Multi-source Attribute Value Extraction

The dataset contains 3 million attribute-value annotations across 1257 unique categories on 2.2 million cleaned Amazon product profiles. It is a large, multi-sourced, diverse dataset for product attr

Google Research Datasets 89 Jan 08, 2023
img2pose: Face Alignment and Detection via 6DoF, Face Pose Estimation

img2pose: Face Alignment and Detection via 6DoF, Face Pose Estimation Figure 1: We estimate the 6DoF rigid transformation of a 3D face (rendered in si

Vítor Albiero 519 Dec 29, 2022
git《Self-Attention Attribution: Interpreting Information Interactions Inside Transformer》(AAAI 2021) GitHub:

Self-Attention Attribution This repository contains the implementation for AAAI-2021 paper Self-Attention Attribution: Interpreting Information Intera

60 Dec 29, 2022
A human-readable PyTorch implementation of "Self-attention Does Not Need O(n^2) Memory"

memory_efficient_attention.pytorch A human-readable PyTorch implementation of "Self-attention Does Not Need O(n^2) Memory" (Rabe&Staats'21). def effic

Ryuichiro Hataya 7 Dec 26, 2022
Pytorch implementation of Straight Sampling Network For Point Cloud Learning (ICIP2021).

Pytorch code for SS-Net This is a pytorch implementation of Straight Sampling Network For Point Cloud Learning (ICIP2021). Environment Code is tested

Sun Ran 1 May 18, 2022
Data and codes for ACL 2021 paper: Towards Emotional Support Dialog Systems

Emotional-Support-Conversation Copyright © 2021 CoAI Group, Tsinghua University. All rights reserved. Data and codes are for academic research use onl

126 Dec 21, 2022