Experiments with Fourier layers on simulation data.

Overview

Teaser

Factorized Fourier Neural Operators

This repository contains the code to reproduce the results in our NeurIPS 2021 ML4PS workshop paper, Factorized Fourier Neural Operators.

The Fourier Neural Operator (FNO) is a learning-based method for efficiently simulating partial differential equations. We propose the Factorized Fourier Neural Operator (F-FNO) that allows much better generalization with deeper networks. With a careful combination of the Fourier factorization, weight sharing, the Markov property, and residual connections, F-FNOs achieve a six-fold reduction in error on the most turbulent setting of the Navier-Stokes benchmark dataset. We show that our model maintains an error rate of 2% while still running an order of magnitude faster than a numerical solver, even when the problem setting is extended to include additional contexts such as viscosity and time-varying forces. This enables the same pretrained neural network to model vastly different conditions.

Getting Started

# Set up pyenv and pin python version to 3.9.7
curl https://pyenv.run | bash
# Configure our shell's environment for pyenv
pyenv install 3.9.7
pyenv local 3.9.7

# Set up poetry
curl -sSL https://raw.githubusercontent.com/python-poetry/poetry/master/install-poetry.py | python -
export PATH="$HOME/.local/bin:$PATH"

# Install all python dependencies
poetry install
source .venv/bin/activate # or: poetry shell
# If we need to use Jupyter notebooks
python -m ipykernel install --user --name fourierflow --display-name "fourierflow"
# Temp fix until allennlp has upgraded transformers dependencies to 4.11
poe update-transformers
# Manually reinstall Pytorch with CUDA 11.1 support
# Monitor poetry's support for pytorch here: https://github.com/python-poetry/poetry/issues/2613
poe install-torch-cuda11

# set default paths
cp example.env .env
# The environment variables in .env will be loaded automatically when running
# fourierflow train, but we can also load them manually in our terminal
export $(cat .env | xargs)

# Alternatively, you can pass the paths to the system using env vars, e.g.
FNO_DATA_ROOT=/My/Data/Location fourierflow

Navier Stokes Experiments

You can download all of our datasets and pretrained model as follows:

# Datasets (209GB)
wget --continue https://object-store.rc.nectar.org.au/v1/AUTH_c0e4d64401cf433fb0260d211c3f23f8/fourierflow/data.tar.gz
tar -zxvf data.tar.gz

# Pretrained models and results (30GB)
wget --continue https://object-store.rc.nectar.org.au/v1/AUTH_c0e4d64401cf433fb0260d211c3f23f8/fourierflow/experiments.tar.gz
tar -zxvf experiments.tar.gz

Alternatively, you can also generate the datasets from scratch:

# Download Navier Stokes datasets
fourierflow download fno

# Generate Navier Stokes on toruses with a different forcing function and
# viscosity for each sample. Takes 14 hours.
fourierflow generate navier-stokes --force random --cycles 2 --mu-min 1e-5 \
    --mu-max 1e-4 --steps 200 --delta 1e-4 \
    data/navier-stokes/random_force_mu.h5

# Generate Navier Stokes on toruses with a different time-varying forcing
# function and a different viscosity for each sample. Takes 21 hours.
fourierflow generate navier-stokes --force random --cycles 2 --mu-min 1e-5 \
    --mu-max 1e-4 --steps 200 --delta 1e-4 --varying-force \
    data/navier-stokes/random_varying_force_mu.h5

# If we decrease delta from 1e-4 to 1e-5, generating the same dataset would now
# take 10 times as long, while the difference between the solutions in step 20
# is only 0.04%.

Training and test commands:

# Reproducing SOA model on Navier Stokes from Li et al (2021).
fourierflow train --trial 0 experiments/navier_stokes_4/zongyi/4_layers/config.yaml

# Train with our best model
fourierflow train --trial 0 experiments/navier_stokes_4/markov/24_layers/config.yaml

# Get inference time on test set
fourierflow predict --trial 0 experiments/navier_stokes_4/markov/24_layers/config.yaml

Visualization commands:

# Create all plots and tables for paper
fourierflow plot layer
fourierflow plot complexity
fourierflow plot table-3

# Create the flow animation for presentation
fourierflow plot flow

# Create plots for the poster
fourierflow plot poster
Owner
Alasdair Tran
Just another collection of fermions and bosons.
Alasdair Tran
LaneAF: Robust Multi-Lane Detection with Affinity Fields

LaneAF: Robust Multi-Lane Detection with Affinity Fields This repository contains Pytorch code for training and testing LaneAF lane detection models i

155 Dec 17, 2022
This repository contains project created during the Data Challenge module at London School of Hygiene & Tropical Medicine

LSHTM_RCS This repository contains project created during the Data Challenge module at London School of Hygiene & Tropical Medicine (LSHTM) in collabo

Lukas Kopecky 3 Jan 30, 2022
Self-Supervised Multi-Frame Monocular Scene Flow (CVPR 2021)

Self-Supervised Multi-Frame Monocular Scene Flow 3D visualization of estimated depth and scene flow (overlayed with input image) from temporally conse

Visual Inference Lab @TU Darmstadt 85 Dec 22, 2022
A data-driven approach to quantify the value of classifiers in a machine learning ensemble.

Documentation | External Resources | Research Paper Shapley is a Python library for evaluating binary classifiers in a machine learning ensemble. The

Benedek Rozemberczki 188 Dec 29, 2022
XViT - Space-time Mixing Attention for Video Transformer

XViT - Space-time Mixing Attention for Video Transformer This is the official implementation of the XViT paper: @inproceedings{bulat2021space, title

Adrian Bulat 33 Dec 23, 2022
🌈 PyTorch Implementation for EMNLP'21 Findings "Reasoning Visual Dialog with Sparse Graph Learning and Knowledge Transfer"

SGLKT-VisDial Pytorch Implementation for the paper: Reasoning Visual Dialog with Sparse Graph Learning and Knowledge Transfer Gi-Cheon Kang, Junseok P

Gi-Cheon Kang 9 Jul 05, 2022
This is the code for the paper "Jinkai Zheng, Xinchen Liu, Wu Liu, Lingxiao He, Chenggang Yan, Tao Mei: Gait Recognition in the Wild with Dense 3D Representations and A Benchmark. (CVPR 2022)"

Gait3D-Benchmark This is the code for the paper "Jinkai Zheng, Xinchen Liu, Wu Liu, Lingxiao He, Chenggang Yan, Tao Mei: Gait Recognition in the Wild

82 Jan 04, 2023
A PyTorch implementation of the Relational Graph Convolutional Network (RGCN).

Torch-RGCN Torch-RGCN is a PyTorch implementation of the RGCN, originally proposed by Schlichtkrull et al. in Modeling Relational Data with Graph Conv

Thiviyan Singam 66 Nov 30, 2022
Fader Networks: Manipulating Images by Sliding Attributes - NIPS 2017

FaderNetworks PyTorch implementation of Fader Networks (NIPS 2017). Fader Networks can generate different realistic versions of images by modifying at

Facebook Research 753 Dec 23, 2022
[CVPR 2022] Thin-Plate Spline Motion Model for Image Animation.

[CVPR2022] Thin-Plate Spline Motion Model for Image Animation Source code of the CVPR'2022 paper "Thin-Plate Spline Motion Model for Image Animation"

yoyo-nb 1.4k Dec 30, 2022
Python package for visualizing the loss landscape of parameterized quantum algorithms.

orqviz A Python package for easily visualizing the loss landscape of Variational Quantum Algorithms by Zapata Computing Inc. orqviz provides a collect

Zapata Computing, Inc. 75 Dec 30, 2022
The UI as a mobile display for OP25

OP25 Mobile Control Head A 'remote' control head that interfaces with an OP25 instance. We take advantage of some data end-points left exposed for the

Sarah Rose Giddings 13 Dec 28, 2022
B2EA: An Evolutionary Algorithm Assisted by Two Bayesian Optimization Modules for Neural Architecture Search

B2EA: An Evolutionary Algorithm Assisted by Two Bayesian Optimization Modules for Neural Architecture Search This is the offical implementation of the

SNU ADSL 0 Feb 07, 2022
Object DGCNN and DETR3D, Our implementations are built on top of MMdetection3D.

Object DGCNN & DETR3D This repo contains the implementations of Object DGCNN (https://arxiv.org/abs/2110.06923) and DETR3D (https://arxiv.org/abs/2110

Wang, Yue 539 Jan 07, 2023
Base pretrained models and datasets in pytorch (MNIST, SVHN, CIFAR10, CIFAR100, STL10, AlexNet, VGG16, VGG19, ResNet, Inception, SqueezeNet)

This is a playground for pytorch beginners, which contains predefined models on popular dataset. Currently we support mnist, svhn cifar10, cifar100 st

Aaron Chen 2.4k Dec 28, 2022
Official Repsoitory for "Mish: A Self Regularized Non-Monotonic Neural Activation Function" [BMVC 2020]

Mish: Self Regularized Non-Monotonic Activation Function BMVC 2020 (Official Paper) Notes: (Click to expand) A considerably faster version based on CU

Xa9aX ツ 1.2k Dec 29, 2022
functorch is a prototype of JAX-like composable function transforms for PyTorch.

functorch is a prototype of JAX-like composable function transforms for PyTorch.

Facebook Research 1.2k Jan 09, 2023
No-Reference Image Quality Assessment via Transformers, Relative Ranking, and Self-Consistency

This repository contains the implementation for the paper: No-Reference Image Quality Assessment via Transformers, Relative Ranking, and Self-Consiste

Alireza Golestaneh 75 Dec 30, 2022
Dogs classification with Deep Metric Learning using some popular losses

Tsinghua Dogs classification with Deep Metric Learning 1. Introduction Tsinghua Dogs dataset Tsinghua Dogs is a fine-grained classification dataset fo

QuocThangNguyen 45 Nov 09, 2022
A treasure chest for visual recognition powered by PaddlePaddle

简体中文 | English PaddleClas 简介 飞桨图像识别套件PaddleClas是飞桨为工业界和学术界所准备的一个图像识别任务的工具集,助力使用者训练出更好的视觉模型和应用落地。 近期更新 2021.11.1 发布PP-ShiTu技术报告,新增饮料识别demo 2021.10.23 发

4.6k Dec 31, 2022