Implementation of Axial attention - attending to multi-dimensional data efficiently

Overview

Axial Attention

PyPI version

Implementation of Axial attention in Pytorch. A simple but powerful technique to attend to multi-dimensional data efficiently. It has worked wonders for me and many other researchers.

Simply add some positional encoding to your data and pass it into this handy class, specifying which dimension is considered the embedding, and how many axial dimensions to rotate through. All the permutating, reshaping, will be taken care of for you.

This paper was actually rejected on the basis of being too simple. And yet, it has since been used successfully in a number of applications, among those weather prediction, all-attention image segmentation. Just goes to show.

Install

$ pip install axial_attention

Usage

Image

import torch
from axial_attention import AxialAttention

img = torch.randn(1, 3, 256, 256)

attn = AxialAttention(
    dim = 3,               # embedding dimension
    dim_index = 1,         # where is the embedding dimension
    dim_heads = 32,        # dimension of each head. defaults to dim // heads if not supplied
    heads = 1,             # number of heads for multi-head attention
    num_dimensions = 2,    # number of axial dimensions (images is 2, video is 3, or more)
    sum_axial_out = True   # whether to sum the contributions of attention on each axis, or to run the input through them sequentially. defaults to true
)

attn(img) # (1, 3, 256, 256)

Channel-last image latents

import torch
from axial_attention import AxialAttention

img = torch.randn(1, 20, 20, 512)

attn = AxialAttention(
    dim = 512,           # embedding dimension
    dim_index = -1,      # where is the embedding dimension
    heads = 8,           # number of heads for multi-head attention
    num_dimensions = 2,  # number of axial dimensions (images is 2, video is 3, or more)
)

attn(img) # (1, 20, 20 ,512)

Video

import torch
from axial_attention import AxialAttention

video = torch.randn(1, 5, 128, 256, 256)

attn = AxialAttention(
    dim = 128,           # embedding dimension
    dim_index = 2,       # where is the embedding dimension
    heads = 8,           # number of heads for multi-head attention
    num_dimensions = 3,  # number of axial dimensions (images is 2, video is 3, or more)
)

attn(video) # (1, 5, 128, 256, 256)

Image Transformer, with reversible network

import torch
from torch import nn
from axial_attention import AxialImageTransformer

conv1x1 = nn.Conv2d(3, 128, 1)

transformer = AxialImageTransformer(
    dim = 128,
    depth = 12,
    reversible = True
)

img = torch.randn(1, 3, 512, 512)

transformer(conv1x1(img)) # (1, 3, 512, 512)

With axial positional embedding

import torch
from axial_attention import AxialAttention, AxialPositionalEmbedding

img = torch.randn(1, 512, 20, 20)

attn = AxialAttention(
    dim = 512,
    heads = 8,
    dim_index = 1
)

pos_emb = AxialPositionalEmbedding(
    dim = 512,
    shape = (20, 20)
)

img = pos_emb(img)  # (1, 512, 20, 20)  - now positionally embedded
img = attn(img)     # (1, 512, 20, 20)

Citation

@misc{ho2019axial,
    title  = {Axial Attention in Multidimensional Transformers},
    author = {Jonathan Ho and Nal Kalchbrenner and Dirk Weissenborn and Tim Salimans},
    year   = {2019},
    archivePrefix = {arXiv}
}
@misc{wang2020axialdeeplab,
    title   = {Axial-DeepLab: Stand-Alone Axial-Attention for Panoptic Segmentation},
    author  = {Huiyu Wang and Yukun Zhu and Bradley Green and Hartwig Adam and Alan Yuille and Liang-Chieh Chen},
    year    = {2020},
    eprint  = {2003.07853},
    archivePrefix = {arXiv},
    primaryClass = {cs.CV}
}
@inproceedings{huang2019ccnet,
    title   = {Ccnet: Criss-cross attention for semantic segmentation},
    author  = {Huang, Zilong and Wang, Xinggang and Huang, Lichao and Huang, Chang and Wei, Yunchao and Liu, Wenyu},
    booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision},
    pages   = {603--612},
    year    = {2019}
}
Comments
  • Reimplementation of image modeling results in AXIAL ATTENTION IN MULTIDIMENSIONAL TRANSFORMERS.

    Reimplementation of image modeling results in AXIAL ATTENTION IN MULTIDIMENSIONAL TRANSFORMERS.

    Hi, this is a nice paper. How can I use your shared code to reimplement the image modeling task on ImageNet 32x32?

    Thanks. Looking forward to your reply.

    opened by liujiaheng 3
  • AxialPositionalEmbedding

    AxialPositionalEmbedding

    Would you be able to provide an example of how to add the positional encoding with the AxialPositionalEmbedding class or explain what the emb_dim, emb_dim_index, and dimensions arguments are specifically? Thanks for the repo!

    opened by dansola 2
  • Problem of ParameterList with nn.DataParallel

    Problem of ParameterList with nn.DataParallel

    https://github.com/lucidrains/axial-attention/blob/a1a483c0f4a3922eef8f9a857dc1a802523bd437/axial_attention/axial_attention.py#L100

    This line would lead to the following issue: "UserWarning: nn.ParameterList is being used with DataParallel but this is not supported. This list will appear empty for the models replicated on each GPU except the original one."

    It is a known issue here

    The simple solution should be to store the Parameters directly on the Module.

    class AxialPositionalEmbedding(nn.Module):
        def __init__(self, dim, shape, emb_dim_index = 1):
            super().__init__()
            parameters = []
            total_dimensions = len(shape) + 2
            ax_dim_indexes = [i for i in range(1, total_dimensions) if i != emb_dim_index]
            
            for i, (axial_dim, axial_dim_index) in enumerate(zip(shape, ax_dim_indexes)):
                shape = [1] * total_dimensions
                shape[emb_dim_index] = dim
                shape[axial_dim_index] = axial_dim
                parameter = nn.Parameter(torch.randn(*shape))
                setattr(self, f'param_{i}', parameter)
                setattr(self, f'param_num', i+1)
    
        def forward(self, x):
            for i in range(self.param_num):
                x = x + getattr(self, f'param_{i}')
            return x
    
    opened by resuly 1
  • Positional embeddings for different image sizes

    Positional embeddings for different image sizes

    Hi, once again thanks for your great work! Since I want to use the axial attention with positional embedding for unknown image sizes (But I know the max size), I was wondering if you think that changing https://github.com/lucidrains/axial-attention/blob/master/axial_attention/axial_attention.py#L104 to

    for cnt, param in enumerate(self.params):
        x = x + param[([slice(None)] * (cnt + 2) + [slice(x.shape[cnt + 2])])]
    

    does the right thing. I can now do this

    v = AxialImageTransformer(64, depth = 1, axial_pos_emb_shape = (64,64), dim_index = 1)       
    t1 = torch.randn(2, 64, 17, 16)
    t2 = torch.randn(2, 64, 13, 18)
    t3 = torch.randn(2, 64, 64, 64)
    print(v(t1).shape)
    print(v(t2).shape)
    print(v(t3).shape)
    Output:
    torch.Size([2, 64, 17, 16])
    torch.Size([2, 64, 13, 18])
    torch.Size([2, 64, 64, 64])
    

    I think that makes it easier to integrate it in fully convolutional nets for multi scale training.

    opened by PhilippMarquardt 1
  • User Warning: Mixed memory format inputs detected

    User Warning: Mixed memory format inputs detected

    At site-packages/axial_attention/axial_attention.py:176: UserWarning: Mixed memory format inputs detected while calling the operator. The operator will output contiguous tensor even if some of the inputs are in channels_last format. ( Triggered internally at /opt/conda/conda-bld/pytorch_1595629427286/work/aten/src/ATen/native/TensorIterator.cpp:918.) return sum(map(lambda axial_attn: axial_attn(x), self.axial_attentions))

    I am using latest axial_attention (v0.4) and Pytorch 1.6.0

    Code:

    import torch
    from axial_attention import AxialAttention
    
    img = torch.randn(1, 24, 64, 64)
    
    attn = AxialAttention(
        dim = 24,               # embedding dimension
        dim_index = 1,         # where is the embedding dimension
        dim_heads = 32,        # dimension of each head. defaults to dim // heads if not supplied
        heads = 8,             # number of heads for multi-head attention
        num_dimensions = 2,    # number of axial dimensions (images is 2, video is 3, or more)
        sum_axial_out = True   # whether to sum the contributions of attention on each axis, or to run the input through them sequentially. defaults to true
    )
    
    out= attn(img) 
    
    

    Will it affect trainings and inference?

    opened by lokeshkvn 1
  • Examples for image sequence/video

    Examples for image sequence/video

    Hello, Do you have examples of integrating this on image sequences? I am trying to get rid of ConvLSTM's for encoding sequence of images and AxialAttention may be a good starting point. Do you have an exmaple/notebook that I could look to integrate this on my type of data? Thank you for this amazing work. Thomas

    opened by tcapelle 1
  • Ask a question

    Ask a question

    I'm interested to your excellent work,but I'm new to pytorch,can I ask a question where is the start position in the code that i will understand whole project from it ?Thx for your reply

    opened by meiguoofa 0
  • Hi, I have a problem

    Hi, I have a problem

    import torch from axial_attention import AxialAttention

    img = torch.randn(1, 3, 256, 256)

    attn = AxialAttention( dim = 3, # embedding dimension dim_index = 1, # where is the embedding dimension dim_heads = 32, # dimension of each head. defaults to dim // heads if not supplied heads = 1, # number of heads for multi-head attention num_dimensions = 2, # number of axial dimensions (images is 2, video is 3, or more) sum_axial_out = True # whether to sum the contributions of attention on each axis, or to run the input through them sequentially. defaults to true )

    attn(img) # (1, 3, 256, 256)

    Thanks for your great project, I want to ask if my image is one channel image will influence the num_dimensions value?

    opened by meiguoofa 0
  • Extracting attention maps

    Extracting attention maps

    Hi there,

    Excellent project!

    I'm using axial-attention with video (1, 5, 128, 256, 256) and sum_axial_out=True, and I wish to visualise the attention maps.

    Essentially, given my video, and two frame indices frame_a_idx and frame_b_idx, I need to extract the attention map over frame_b to a chosen pixel (x, y) in frame_a (after the axial sum).

    My understanding is that I should be able to reshape the dots (after softmax) according to the permutations in calculate_permutations, then sum these permuted dots together to form a final attention score tensor of an accessible shape, thus ready for visualisation.

    I am slightly stuck due to the numerous axial permutations and shape mismatches. What I am doing is as follows:

    In SelfAttention.forward():

    dots_reshaped = dots.reshape(b, h, t, t)
    return out, dots_reshaped
    

    In PermuteToFrom.forward():

     # attention
    axial, dots = self.fn(axial, **kwargs)
    
    # restore to original shape and permutation
    axial = axial.reshape(*shape)
    axial = axial.permute(*self.inv_permutation).contiguous()
    dots = dots.reshape(*shape[:3], *dots.shape[1:])
    

    However, I am unsure of how to un-permute the dots appropriately such that all resulting “axes” (of different sizes) can be summed. If you have suggestions or code for doing so, it would be very much appreciated, thanks!

    opened by vibrant-galaxy 3
Releases(0.6.1)
Owner
Phil Wang
Working with Attention. It's all we need
Phil Wang
A treasure chest for visual recognition powered by PaddlePaddle

简体中文 | English PaddleClas 简介 飞桨图像识别套件PaddleClas是飞桨为工业界和学术界所准备的一个图像识别任务的工具集,助力使用者训练出更好的视觉模型和应用落地。 近期更新 2021.11.1 发布PP-ShiTu技术报告,新增饮料识别demo 2021.10.23 发

4.6k Dec 31, 2022
N-gram models- Unsmoothed, Laplace, Deleted Interpolation

N-gram models- Unsmoothed, Laplace, Deleted Interpolation

Ravika Nagpal 1 Jan 04, 2022
A hand tracking demo made with mediapipe where you can control lights with pinching your fingers and moving your hand up/down.

HandTrackingBrightnessControl A hand tracking demo made with mediapipe where you can control lights with pinching your fingers and moving your hand up

Teemu Laurila 19 Feb 12, 2022
The repository offers the official implementation of our paper in PyTorch.

Cloth Interactive Transformer (CIT) Cloth Interactive Transformer for Virtual Try-On Bin Ren1, Hao Tang1, Fanyang Meng2, Runwei Ding3, Ling Shao4, Phi

Bingoren 49 Dec 01, 2022
This repository contains project created during the Data Challenge module at London School of Hygiene & Tropical Medicine

LSHTM_RCS This repository contains project created during the Data Challenge module at London School of Hygiene & Tropical Medicine (LSHTM) in collabo

Lukas Kopecky 3 Jan 30, 2022
pixelNeRF: Neural Radiance Fields from One or Few Images

pixelNeRF: Neural Radiance Fields from One or Few Images Alex Yu, Vickie Ye, Matthew Tancik, Angjoo Kanazawa UC Berkeley arXiv: http://arxiv.org/abs/2

Alex Yu 1k Jan 04, 2023
Deep Halftoning with Reversible Binary Pattern

Deep Halftoning with Reversible Binary Pattern ICCV Paper | Project Website | BibTex Overview Existing halftoning algorithms usually drop colors and f

Menghan Xia 17 Nov 22, 2022
This is the official implementation of "One Question Answering Model for Many Languages with Cross-lingual Dense Passage Retrieval".

CORA This is the official implementation of the following paper: Akari Asai, Xinyan Yu, Jungo Kasai and Hannaneh Hajishirzi. One Question Answering Mo

Akari Asai 59 Dec 28, 2022
An Open-Source Package for Information Retrieval.

OpenMatch An Open-Source Package for Information Retrieval. 😃 What's New Top Spot on TREC-COVID Challenge (May 2020, Round2) The twin goals of the ch

THUNLP 439 Dec 27, 2022
Evaluating deep transfer learning for whole-brain cognitive decoding

Evaluating deep transfer learning for whole-brain cognitive decoding This README file contains the following sections: Project description Repository

Armin Thomas 5 Oct 31, 2022
[ICCV2021] Safety-aware Motion Prediction with Unseen Vehicles for Autonomous Driving

Safety-aware Motion Prediction with Unseen Vehicles for Autonomous Driving Safety-aware Motion Prediction with Unseen Vehicles for Autonomous Driving

Xuanchi Ren 44 Dec 03, 2022
Official PyTorch implementation of the preprint paper "Stylized Neural Painting", accepted to CVPR 2021.

Official PyTorch implementation of the preprint paper "Stylized Neural Painting", accepted to CVPR 2021.

Zhengxia Zou 1.5k Dec 28, 2022
Code for paper: Towards Tokenized Human Dynamics Representation

Video Tokneization Codebase for video tokenization, based on our paper Towards Tokenized Human Dynamics Representation. Prerequisites (tested under Py

Kenneth Li 20 May 31, 2022
A PyTorch Implementation of Single Shot Scale-invariant Face Detector.

S³FD: Single Shot Scale-invariant Face Detector A PyTorch Implementation of Single Shot Scale-invariant Face Detector. Eval python wider_eval_pytorch.

carwin 235 Jan 07, 2023
Code of Classification Saliency-Based Rule for Visible and Infrared Image Fusion

CSF Code of Classification Saliency-Based Rule for Visible and Infrared Image Fusion Tips: For testing: CUDA_VISIBLE_DEVICES=0 python main.py For trai

Han Xu 14 Oct 31, 2022
Civsim is a basic civilisation simulation and modelling system built in Python 3.8.

Civsim Introduction Civsim is a basic civilisation simulation and modelling system built in Python 3.8. It requires the following packages: perlin_noi

17 Aug 08, 2022
IMBENS: class-imbalanced ensemble learning in Python.

IMBENS: class-imbalanced ensemble learning in Python. Links: [Documentation] [Gallery] [PyPI] [Changelog] [Source] [Download] [知乎/Zhihu] [中文README] [a

Zhining Liu 176 Jan 04, 2023
Official Implementation of "Designing an Encoder for StyleGAN Image Manipulation"

Designing an Encoder for StyleGAN Image Manipulation (SIGGRAPH 2021) Recently, there has been a surge of diverse methods for performing image editing

749 Jan 09, 2023
Code and project page for ICCV 2021 paper "DisUnknown: Distilling Unknown Factors for Disentanglement Learning"

DisUnknown: Distilling Unknown Factors for Disentanglement Learning See introduction on our project page Requirements PyTorch = 1.8.0 torch.linalg.ei

Sitao Xiang 24 May 16, 2022
MODALS: Modality-agnostic Automated Data Augmentation in the Latent Space

Update (20 Jan 2020): MODALS on text data is avialable MODALS MODALS: Modality-agnostic Automated Data Augmentation in the Latent Space Table of Conte

38 Dec 15, 2022