Implementation of Axial attention - attending to multi-dimensional data efficiently

Overview

Axial Attention

PyPI version

Implementation of Axial attention in Pytorch. A simple but powerful technique to attend to multi-dimensional data efficiently. It has worked wonders for me and many other researchers.

Simply add some positional encoding to your data and pass it into this handy class, specifying which dimension is considered the embedding, and how many axial dimensions to rotate through. All the permutating, reshaping, will be taken care of for you.

This paper was actually rejected on the basis of being too simple. And yet, it has since been used successfully in a number of applications, among those weather prediction, all-attention image segmentation. Just goes to show.

Install

$ pip install axial_attention

Usage

Image

import torch
from axial_attention import AxialAttention

img = torch.randn(1, 3, 256, 256)

attn = AxialAttention(
    dim = 3,               # embedding dimension
    dim_index = 1,         # where is the embedding dimension
    dim_heads = 32,        # dimension of each head. defaults to dim // heads if not supplied
    heads = 1,             # number of heads for multi-head attention
    num_dimensions = 2,    # number of axial dimensions (images is 2, video is 3, or more)
    sum_axial_out = True   # whether to sum the contributions of attention on each axis, or to run the input through them sequentially. defaults to true
)

attn(img) # (1, 3, 256, 256)

Channel-last image latents

import torch
from axial_attention import AxialAttention

img = torch.randn(1, 20, 20, 512)

attn = AxialAttention(
    dim = 512,           # embedding dimension
    dim_index = -1,      # where is the embedding dimension
    heads = 8,           # number of heads for multi-head attention
    num_dimensions = 2,  # number of axial dimensions (images is 2, video is 3, or more)
)

attn(img) # (1, 20, 20 ,512)

Video

import torch
from axial_attention import AxialAttention

video = torch.randn(1, 5, 128, 256, 256)

attn = AxialAttention(
    dim = 128,           # embedding dimension
    dim_index = 2,       # where is the embedding dimension
    heads = 8,           # number of heads for multi-head attention
    num_dimensions = 3,  # number of axial dimensions (images is 2, video is 3, or more)
)

attn(video) # (1, 5, 128, 256, 256)

Image Transformer, with reversible network

import torch
from torch import nn
from axial_attention import AxialImageTransformer

conv1x1 = nn.Conv2d(3, 128, 1)

transformer = AxialImageTransformer(
    dim = 128,
    depth = 12,
    reversible = True
)

img = torch.randn(1, 3, 512, 512)

transformer(conv1x1(img)) # (1, 3, 512, 512)

With axial positional embedding

import torch
from axial_attention import AxialAttention, AxialPositionalEmbedding

img = torch.randn(1, 512, 20, 20)

attn = AxialAttention(
    dim = 512,
    heads = 8,
    dim_index = 1
)

pos_emb = AxialPositionalEmbedding(
    dim = 512,
    shape = (20, 20)
)

img = pos_emb(img)  # (1, 512, 20, 20)  - now positionally embedded
img = attn(img)     # (1, 512, 20, 20)

Citation

@misc{ho2019axial,
    title  = {Axial Attention in Multidimensional Transformers},
    author = {Jonathan Ho and Nal Kalchbrenner and Dirk Weissenborn and Tim Salimans},
    year   = {2019},
    archivePrefix = {arXiv}
}
@misc{wang2020axialdeeplab,
    title   = {Axial-DeepLab: Stand-Alone Axial-Attention for Panoptic Segmentation},
    author  = {Huiyu Wang and Yukun Zhu and Bradley Green and Hartwig Adam and Alan Yuille and Liang-Chieh Chen},
    year    = {2020},
    eprint  = {2003.07853},
    archivePrefix = {arXiv},
    primaryClass = {cs.CV}
}
@inproceedings{huang2019ccnet,
    title   = {Ccnet: Criss-cross attention for semantic segmentation},
    author  = {Huang, Zilong and Wang, Xinggang and Huang, Lichao and Huang, Chang and Wei, Yunchao and Liu, Wenyu},
    booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision},
    pages   = {603--612},
    year    = {2019}
}
Comments
  • Reimplementation of image modeling results in AXIAL ATTENTION IN MULTIDIMENSIONAL TRANSFORMERS.

    Reimplementation of image modeling results in AXIAL ATTENTION IN MULTIDIMENSIONAL TRANSFORMERS.

    Hi, this is a nice paper. How can I use your shared code to reimplement the image modeling task on ImageNet 32x32?

    Thanks. Looking forward to your reply.

    opened by liujiaheng 3
  • AxialPositionalEmbedding

    AxialPositionalEmbedding

    Would you be able to provide an example of how to add the positional encoding with the AxialPositionalEmbedding class or explain what the emb_dim, emb_dim_index, and dimensions arguments are specifically? Thanks for the repo!

    opened by dansola 2
  • Problem of ParameterList with nn.DataParallel

    Problem of ParameterList with nn.DataParallel

    https://github.com/lucidrains/axial-attention/blob/a1a483c0f4a3922eef8f9a857dc1a802523bd437/axial_attention/axial_attention.py#L100

    This line would lead to the following issue: "UserWarning: nn.ParameterList is being used with DataParallel but this is not supported. This list will appear empty for the models replicated on each GPU except the original one."

    It is a known issue here

    The simple solution should be to store the Parameters directly on the Module.

    class AxialPositionalEmbedding(nn.Module):
        def __init__(self, dim, shape, emb_dim_index = 1):
            super().__init__()
            parameters = []
            total_dimensions = len(shape) + 2
            ax_dim_indexes = [i for i in range(1, total_dimensions) if i != emb_dim_index]
            
            for i, (axial_dim, axial_dim_index) in enumerate(zip(shape, ax_dim_indexes)):
                shape = [1] * total_dimensions
                shape[emb_dim_index] = dim
                shape[axial_dim_index] = axial_dim
                parameter = nn.Parameter(torch.randn(*shape))
                setattr(self, f'param_{i}', parameter)
                setattr(self, f'param_num', i+1)
    
        def forward(self, x):
            for i in range(self.param_num):
                x = x + getattr(self, f'param_{i}')
            return x
    
    opened by resuly 1
  • Positional embeddings for different image sizes

    Positional embeddings for different image sizes

    Hi, once again thanks for your great work! Since I want to use the axial attention with positional embedding for unknown image sizes (But I know the max size), I was wondering if you think that changing https://github.com/lucidrains/axial-attention/blob/master/axial_attention/axial_attention.py#L104 to

    for cnt, param in enumerate(self.params):
        x = x + param[([slice(None)] * (cnt + 2) + [slice(x.shape[cnt + 2])])]
    

    does the right thing. I can now do this

    v = AxialImageTransformer(64, depth = 1, axial_pos_emb_shape = (64,64), dim_index = 1)       
    t1 = torch.randn(2, 64, 17, 16)
    t2 = torch.randn(2, 64, 13, 18)
    t3 = torch.randn(2, 64, 64, 64)
    print(v(t1).shape)
    print(v(t2).shape)
    print(v(t3).shape)
    Output:
    torch.Size([2, 64, 17, 16])
    torch.Size([2, 64, 13, 18])
    torch.Size([2, 64, 64, 64])
    

    I think that makes it easier to integrate it in fully convolutional nets for multi scale training.

    opened by PhilippMarquardt 1
  • User Warning: Mixed memory format inputs detected

    User Warning: Mixed memory format inputs detected

    At site-packages/axial_attention/axial_attention.py:176: UserWarning: Mixed memory format inputs detected while calling the operator. The operator will output contiguous tensor even if some of the inputs are in channels_last format. ( Triggered internally at /opt/conda/conda-bld/pytorch_1595629427286/work/aten/src/ATen/native/TensorIterator.cpp:918.) return sum(map(lambda axial_attn: axial_attn(x), self.axial_attentions))

    I am using latest axial_attention (v0.4) and Pytorch 1.6.0

    Code:

    import torch
    from axial_attention import AxialAttention
    
    img = torch.randn(1, 24, 64, 64)
    
    attn = AxialAttention(
        dim = 24,               # embedding dimension
        dim_index = 1,         # where is the embedding dimension
        dim_heads = 32,        # dimension of each head. defaults to dim // heads if not supplied
        heads = 8,             # number of heads for multi-head attention
        num_dimensions = 2,    # number of axial dimensions (images is 2, video is 3, or more)
        sum_axial_out = True   # whether to sum the contributions of attention on each axis, or to run the input through them sequentially. defaults to true
    )
    
    out= attn(img) 
    
    

    Will it affect trainings and inference?

    opened by lokeshkvn 1
  • Examples for image sequence/video

    Examples for image sequence/video

    Hello, Do you have examples of integrating this on image sequences? I am trying to get rid of ConvLSTM's for encoding sequence of images and AxialAttention may be a good starting point. Do you have an exmaple/notebook that I could look to integrate this on my type of data? Thank you for this amazing work. Thomas

    opened by tcapelle 1
  • Ask a question

    Ask a question

    I'm interested to your excellent work,but I'm new to pytorch,can I ask a question where is the start position in the code that i will understand whole project from it ?Thx for your reply

    opened by meiguoofa 0
  • Hi, I have a problem

    Hi, I have a problem

    import torch from axial_attention import AxialAttention

    img = torch.randn(1, 3, 256, 256)

    attn = AxialAttention( dim = 3, # embedding dimension dim_index = 1, # where is the embedding dimension dim_heads = 32, # dimension of each head. defaults to dim // heads if not supplied heads = 1, # number of heads for multi-head attention num_dimensions = 2, # number of axial dimensions (images is 2, video is 3, or more) sum_axial_out = True # whether to sum the contributions of attention on each axis, or to run the input through them sequentially. defaults to true )

    attn(img) # (1, 3, 256, 256)

    Thanks for your great project, I want to ask if my image is one channel image will influence the num_dimensions value?

    opened by meiguoofa 0
  • Extracting attention maps

    Extracting attention maps

    Hi there,

    Excellent project!

    I'm using axial-attention with video (1, 5, 128, 256, 256) and sum_axial_out=True, and I wish to visualise the attention maps.

    Essentially, given my video, and two frame indices frame_a_idx and frame_b_idx, I need to extract the attention map over frame_b to a chosen pixel (x, y) in frame_a (after the axial sum).

    My understanding is that I should be able to reshape the dots (after softmax) according to the permutations in calculate_permutations, then sum these permuted dots together to form a final attention score tensor of an accessible shape, thus ready for visualisation.

    I am slightly stuck due to the numerous axial permutations and shape mismatches. What I am doing is as follows:

    In SelfAttention.forward():

    dots_reshaped = dots.reshape(b, h, t, t)
    return out, dots_reshaped
    

    In PermuteToFrom.forward():

     # attention
    axial, dots = self.fn(axial, **kwargs)
    
    # restore to original shape and permutation
    axial = axial.reshape(*shape)
    axial = axial.permute(*self.inv_permutation).contiguous()
    dots = dots.reshape(*shape[:3], *dots.shape[1:])
    

    However, I am unsure of how to un-permute the dots appropriately such that all resulting โ€œaxesโ€ (of different sizes) can be summed. If you have suggestions or code for doing so, it would be very much appreciated, thanks!

    opened by vibrant-galaxy 3
Releases(0.6.1)
Owner
Phil Wang
Working with Attention. It's all we need
Phil Wang
Code of the paper "Shaping Visual Representations with Attributes for Few-Shot Learning (ASL)".

Shaping Visual Representations with Attributes for Few-Shot Learning This code implements the Shaping Visual Representations with Attributes for Few-S

chx_nju 9 Sep 01, 2022
This is a code repository for the paper "Graph Auto-Encoders for Financial Clustering".

Repository for the paper "Graph Auto-Encoders for Financial Clustering" Requirements Python 3.6 torch torch_geometric Instructions This is a simple c

Edward Turner 1 Dec 02, 2021
WebUAV-3M: A Benchmark Unveiling the Power of Million-Scale Deep UAV Tracking

WebUAV-3M: A Benchmark Unveiling the Power of Million-Scale Deep UAV Tracking [Paper Link] Abstract In this work, we contribute a new million-scale Un

25 Jan 01, 2023
CM-NAS: Cross-Modality Neural Architecture Search for Visible-Infrared Person Re-Identification (ICCV2021)

CM-NAS Official Pytorch code of paper CM-NAS: Cross-Modality Neural Architecture Search for Visible-Infrared Person Re-Identification in ICCV2021. Vis

JDAI-CV 40 Nov 25, 2022
prior-based-losses-for-medical-image-segmentation

Repository for papers: Benchmark: Effect of Prior-based Losses on Segmentation Performance: A Benchmark Midl: A Surprisingly Effective Perimeter-based

Rosana EL JURDI 9 Sep 07, 2022
BasicVSR++: Improving Video Super-Resolution with Enhanced Propagation and Alignment

BasicVSR++: Improving Video Super-Resolution with Enhanced Propagation and Alignment

Holy Wu 35 Jan 01, 2023
Code for testing convergence rates of Lipschitz learning on graphs

๐Ÿ“ˆ LipschitzLearningRates The code in this repository reproduces the experimental results on convergence rates for k-nearest neighbor graph infinity L

2 Dec 20, 2021
Symmetry and Uncertainty-Aware Object SLAM for 6DoF Object Pose Estimation

SUO-SLAM This repository hosts the code for our CVPR 2022 paper "Symmetry and Uncertainty-Aware Object SLAM for 6DoF Object Pose Estimation". ArXiv li

Robot Perception & Navigation Group (RPNG) 97 Jan 03, 2023
Simple tutorials using Google's TensorFlow Framework

TensorFlow-Tutorials Introduction to deep learning based on Google's TensorFlow framework. These tutorials are direct ports of Newmu's Theano Tutorial

Nathan Lintz 6k Jan 06, 2023
PyTorch implementation of the R2Plus1D convolution based ResNet architecture described in the paper "A Closer Look at Spatiotemporal Convolutions for Action Recognition"

R2Plus1D-PyTorch PyTorch implementation of the R2Plus1D convolution based ResNet architecture described in the paper "A Closer Look at Spatiotemporal

Irhum Shafkat 342 Dec 16, 2022
Code base for reproducing results of I.Schubert, D.Driess, O.Oguz, and M.Toussaint: Learning to Execute: Efficient Learning of Universal Plan-Conditioned Policies in Robotics. NeurIPS (2021)

Learning to Execute (L2E) Official code base for completely reproducing all results reported in I.Schubert, D.Driess, O.Oguz, and M.Toussaint: Learnin

3 May 18, 2022
NVIDIA Deep Learning Examples for Tensor Cores

NVIDIA Deep Learning Examples for Tensor Cores Introduction This repository provides State-of-the-Art Deep Learning examples that are easy to train an

NVIDIA Corporation 10k Dec 31, 2022
An implementation of Deep Forest 2021.2.1.

Deep Forest (DF) 21 DF21 is an implementation of Deep Forest 2021.2.1. It is designed to have the following advantages: Powerful: Better accuracy than

LAMDA Group, Nanjing University 795 Jan 03, 2023
Cascading Feature Extraction for Fast Point Cloud Registration (BMVC 2021)

Cascading Feature Extraction for Fast Point Cloud Registration This repository contains the source code for the paper [Arxive link comming soon]. Meth

7 May 26, 2022
All course materials for the Zero to Mastery Machine Learning and Data Science course.

Zero to Mastery Machine Learning Welcome! This repository contains all of the code, notebooks, images and other materials related to the Zero to Maste

Daniel Bourke 1.6k Jan 08, 2023
Build Graph Nets in Tensorflow

Graph Nets library Graph Nets is DeepMind's library for building graph networks in Tensorflow and Sonnet. Contact DeepMind 5.2k Jan 05, 2023

Job Assignment System by Real-time Emotion Detection

Emotion-Detection Job Assignment System by Real-time Emotion Detection Emotion is the essential role of facial expression and it could provide a lot o

1 Feb 08, 2022
EfficientNetV2 implementation using PyTorch

EfficientNetV2-S implementation using PyTorch Train Steps Configure imagenet path by changing data_dir in train.py python main.py --benchmark for mode

Jahongir Yunusov 86 Dec 29, 2022
Optimus: the first large-scale pre-trained VAE language model

Optimus: the first pre-trained Big VAE language model This repository contains source code necessary to reproduce the results presented in the EMNLP 2

314 Dec 19, 2022
AOT-GAN for High-Resolution Image Inpainting (codebase for image inpainting)

AOT-GAN for High-Resolution Image Inpainting Arxiv Paper | AOT-GAN: Aggregated Contextual Transformations for High-Resolution Image Inpainting Yanhong

Multimedia Research 214 Jan 03, 2023