A simple and lightweight genetic algorithm for optimization of any machine learning model

Overview

geneticml

Actions Status PyPI License

This package contains a simple and lightweight genetic algorithm for optimization of any machine learning model.

Installation

Use pip to install the package from PyPI:

pip install geneticml

Usage

This package provides a easy way to create estimators and perform the optimization with genetic algorithms. The example below describe in details how to create a simulation with genetic algorithms using evolutionary approach to train a sklearn.neural_network.MLPClassifier. A full list of examples could be found here.

from geneticml.optimizers import GeneticOptimizer
from geneticml.strategy import EvolutionaryStrategy
from geneticml.algorithms import EstimatorBuilder
from metrics import metric_accuracy
from sklearn.neural_network import MLPClassifier
from sklearn.datasets import load_iris

# Creates a custom fit method
def fit(model, x, y):
    return model.fit(x, y)

# Creates a custom predict method
def predict(model, x):
    return model.predict(x)

if __name__ == "__main__":

    seed = 11412

    # Creates an estimator
    estimator = EstimatorBuilder()\
        .of(model_type=MLPClassifier)\
        .fit_with(func=fit)\
        .predict_with(func=predict)\
        .build()

    # Defines a strategy for the optimization
    strategy = EvolutionaryStrategy(
        estimator_type=estimator,
        parameters=parameters,
        retain=0.4,
        random_select=0.1,
        mutate_chance=0.2,
        max_children=2,
        random_state=seed
    )

    # Creates the optimizer
    optimizer = GeneticOptimizer(strategy=strategy)

    # Loads the data
    data = load_iris()

    # Defines the metric
    metric = metric_accuracy
    greater_is_better = True

    # Create the simulation using the optimizer and the strategy
    models = optimizer.simulate(
        data=data.data, 
        target=data.target,
        generations=generations,
        population=population,
        evaluation_function=metric,
        greater_is_better=greater_is_better,
        verbose=True
    )

The estimator is the way you define an algorithm or a class that will be used for model instantiation

estimator = EstimatorBuilder().of(model_type=MLPClassifier).fit_with(func=fit).predict_with(func=predict).build()

You need to speficy a custom fit and predict functions. These functions need to use the same signature than the below ones. This happens because the algorithm is generic and needs to know how to perform the fit and predict functions for the models.

# Creates a custom fit method
def fit(model, x, y):
    return model.fit(x, y)

# Creates a custom predict method
def predict(model, x):
    return model.predict(x)

Custom strategy

You can create custom strategies for the optimizers by extending the geneticml.strategy.BaseStrategy and implementing the execute(...) function.

class MyCustomStrategy(BaseStrategy):
    def __init__(self, estimator_type: Type[BaseEstimator]) -> None:
        super().__init__(estimator_type)

    def execute(self, population: List[Type[T]]) -> List[T]:
        return population

The custom strategies will allow you to create optimization strategies to archive your goals. We currently have the evolutionary strategy but you can define your own :)

Custom optimizer

You can create custom optimizers by extending the geneticml.optimizers.BaseOptimizer and implementing the simulate(...) function.

class MyCustomOptimizer(BaseOptimizer):
    def __init__(self, strategy: Type[BaseStrategy]) -> None:
        super().__init__(strategy)

    def simulate(self, data, target, verbose: bool = True) -> List[T]:
        """
        Generate a network with the genetic algorithm.

        Parameters:
            data (?): The data used to train the algorithm
            target (?): The targets used to train the algorithm
            verbose (bool): True if should verbose or False if not

        Returns:
            (List[BaseEstimator]): A list with the final population sorted by their loss
        """
        estimators = self._strategy.create_population()
        for x in estimators:
            x.fit(data, target)
            y_pred = x.predict(target)
        pass 

Custom optimizers will let you define how you want your algorithm to optimize the selected strategy. You can also combine custom strategies and optimizers to archive your desire objective.

Testing

The following are the steps to create a virtual environment into a folder named "venv" and install the requirements.

# Create virtualenv
python3 -m venv venv
# activate virtualenv
source venv/bin/activate
# update packages
pip install --upgrade pip setuptools wheel
# install requirements
python setup.py install

Tests can be run with python setup.py test when the virtualenv is active.

Contributing

All contributions, bug reports, bug fixes, documentation improvements, enhancements, and ideas are welcome.

A detailed overview on how to contribute can be found in the contributing guide. There is also an overview on GitHub.

If you are simply looking to start working with the geneticml codebase, navigate to the GitHub "issues" tab and start looking through interesting issues. Or maybe through using geneticml you have an idea of your own or are looking for something in the documentation and thinking ‘this can be improved’...you can do something about it!

Feel free to ask questions on the mailing the contributors.

Changelog

1.0.3 - Included pytorch example

1.0.2 - Minor fixes on naming

1.0.1 - README fixes

1.0.0 - First release

You might also like...
Python Extreme Learning Machine (ELM) is a machine learning technique used for classification/regression tasks.

Python Extreme Learning Machine (ELM) Python Extreme Learning Machine (ELM) is a machine learning technique used for classification/regression tasks.

Vowpal Wabbit is a machine learning system which pushes the frontier of machine learning with techniques
Vowpal Wabbit is a machine learning system which pushes the frontier of machine learning with techniques

Vowpal Wabbit is a machine learning system which pushes the frontier of machine learning with techniques such as online, hashing, allreduce, reductions, learning2search, active, and interactive learning.

CD) in machine learning projectsImplementing continuous integration & delivery (CI/CD) in machine learning projects

CML with cloud compute This repository contains a sample project using CML with Terraform (via the cml-runner function) to launch an AWS EC2 instance

High performance, easy-to-use, and scalable machine learning (ML) package, including linear model (LR), factorization machines (FM), and field-aware factorization machines (FFM) for Python and CLI interface.
High performance, easy-to-use, and scalable machine learning (ML) package, including linear model (LR), factorization machines (FM), and field-aware factorization machines (FFM) for Python and CLI interface.

What is xLearn? xLearn is a high performance, easy-to-use, and scalable machine learning package that contains linear model (LR), factorization machin

Model Validation Toolkit is a collection of tools to assist with validating machine learning models prior to deploying them to production and monitoring them after deployment to production.

Model Validation Toolkit is a collection of tools to assist with validating machine learning models prior to deploying them to production and monitoring them after deployment to production.

Iris-Heroku - Putting a Machine Learning Model into Production with Flask and Heroku
Iris-Heroku - Putting a Machine Learning Model into Production with Flask and Heroku

Puesta en Producción de un modelo de aprendizaje automático con Flask y Heroku L

DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective.

DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective. 10x Larger Models 10x Faster Trainin

Machine Learning Model to predict the payment date of an invoice when it gets created in the system.

Payment-Date-Prediction Machine Learning Model to predict the payment date of an invoice when it gets created in the system.

Python package for machine learning for healthcare using a OMOP common data model

This library was developed in order to facilitate rapid prototyping in Python of predictive machine-learning models using longitudinal medical data from an OMOP CDM-standard database.

Comments
  • feature/data_sampling

    feature/data_sampling

    We added support to run your own data sampling (e.g., imblearn.SMOTE) and use the genetic algorithms to find the best set parameters for them. Also, you can find the best set of parameters for your machine learning model at same time that find the best minority class size that maximizes the model score

    opened by albarsil 0
Releases(1.0.8)
Owner
Allan Barcelos
Allan Barcelos
CD) in machine learning projectsImplementing continuous integration & delivery (CI/CD) in machine learning projects

CML with cloud compute This repository contains a sample project using CML with Terraform (via the cml-runner function) to launch an AWS EC2 instance

Iterative 19 Oct 03, 2022
Laporan Proyek Machine Learning - Azhar Rizki Zulma

Laporan Proyek Machine Learning - Azhar Rizki Zulma Project Overview Domain proyek yang dipilih dalam proyek machine learning ini adalah mengenai hibu

Azhar Rizki Zulma 6 Mar 12, 2022
A simple machine learning package to cluster keywords in higher-level groups.

Simple Keyword Clusterer A simple machine learning package to cluster keywords in higher-level groups. Example: "Senior Frontend Engineer" -- "Fronte

Andrea D'Agostino 10 Dec 18, 2022
A toolkit for making real world machine learning and data analysis applications in C++

dlib C++ library Dlib is a modern C++ toolkit containing machine learning algorithms and tools for creating complex software in C++ to solve real worl

Davis E. King 11.6k Jan 02, 2023
Little Ball of Fur - A graph sampling extension library for NetworKit and NetworkX (CIKM 2020)

Little Ball of Fur is a graph sampling extension library for Python. Please look at the Documentation, relevant Paper, Promo video and External Resour

Benedek Rozemberczki 619 Dec 14, 2022
CorrProxies - Optimizing Machine Learning Inference Queries with Correlative Proxy Models

CorrProxies - Optimizing Machine Learning Inference Queries with Correlative Proxy Models

ZhihuiYangCS 8 Jun 07, 2022
Pandas Machine Learning and Quant Finance Library Collection

Pandas Machine Learning and Quant Finance Library Collection

148 Dec 07, 2022
Python ML pipeline that showcases mltrace functionality.

mltrace tutorial Date: October 2021 This tutorial builds a training and testing pipeline for a toy ML prediction problem: to predict whether a passeng

Log Labs 28 Nov 09, 2022
Primitives for machine learning and data science.

An Open Source Project from the Data to AI Lab, at MIT MLPrimitives Pipelines and primitives for machine learning and data science. Documentation: htt

MLBazaar 65 Dec 29, 2022
Relevance Vector Machine implementation using the scikit-learn API.

scikit-rvm scikit-rvm is a Python module implementing the Relevance Vector Machine (RVM) machine learning technique using the scikit-learn API. Quicks

James Ritchie 204 Nov 18, 2022
Retrieve annotated intron sequences and classify them as minor (U12-type) or major (U2-type)

(intron I nterrogator and C lassifier) intronIC is a program that can be used to classify intron sequences as minor (U12-type) or major (U2-type), usi

Graham Larue 4 Jul 26, 2022
Auto updating website that tracks closed & open issues/PRs on scikit-learn/scikit-learn.

Repository Status for Scikit-learn Live webpage Auto updating website that tracks closed & open issues/PRs on scikit-learn/scikit-learn. Running local

Thomas J. Fan 6 Dec 27, 2022
Bonsai: Gradient Boosted Trees + Bayesian Optimization

Bonsai is a wrapper for the XGBoost and Catboost model training pipelines that leverages Bayesian optimization for computationally efficient hyperparameter tuning.

24 Oct 27, 2022
ZenML 🙏: MLOps framework to create reproducible ML pipelines for production machine learning.

ZenML is an extensible, open-source MLOps framework to create production-ready machine learning pipelines. It has a simple, flexible syntax, is cloud and tool agnostic, and has interfaces/abstraction

ZenML 2.6k Jan 08, 2023
Avocado hass time series vs predict price

AVOCADO HASS TIME SERIES VÀ PREDICT PRICE Trước khi vào Heroku muốn giao diện đẹp mọi người chuyển giúp mình theo hình bên dưới https://avocado-hass.h

hieulmsc 3 Dec 18, 2021
PROTEIN EXPRESSION ANALYSIS FOR DOWN SYNDROME

PROTEIN-EXPRESSION-ANALYSIS-FOR-DOWN-SYNDROME Down syndrome (DS) is a chromosomal disorder where organisms have an extra chromosome 21, sometimes know

1 Jan 20, 2022
A simple guide to MLOps through ZenML and its various integrations.

ZenBytes Join our Slack Community and become part of the ZenML family Give the main ZenML repo a GitHub star to show your love ZenBytes is a series of

ZenML 127 Dec 27, 2022
This project used bitcoin, S&P500, and gold to construct an investment portfolio that aimed to minimize risk by minimizing variance.

minvar_invest_portfolio This project used bitcoin, S&P500, and gold to construct an investment portfolio that aimed to minimize risk by minimizing var

1 Jan 06, 2022
A model to predict steering torque fully end-to-end

torque_model The torque model is a spiritual successor to op-smart-torque, which was a project to train a neural network to control a car's steering f

Shane Smiskol 4 Jun 03, 2022
customer churn prediction prevention in telecom industry using machine learning and survival analysis

Telco Customer Churn Prediction - Plotly Dash Application Description This dash application allows you to predict telco customer churn using machine l

Benaissa Mohamed Fayçal 3 Nov 20, 2021