Fine-tuning scripts for evaluating transformer-based models on KLEJ benchmark.

Overview

The KLEJ Benchmark Baselines

The KLEJ benchmark (Kompleksowa Lista Ewaluacji Językowych) is a set of nine evaluation tasks for the Polish language understanding.

This repository contains example scripts to easily fine-tune models from the transformers library on the KLEJ benchmark.

Installation

Install the Python package using the following commands:

$ git clone https://github.com/allegro/klejbenchmark-baselines
$ pip install klejbenchmark-baselines/

Quick Start

To fine-tune your model on KLEJ tasks using the default settings, you can use the provided example scripts.

First, download the KLEJ benchmark datasets:

$ bash scripts/download_klej.sh

After downloading KLEJ, customize training parameters inside the scripts/run_training.sh script and train the models using:

$ bash scripts/run_training.sh

It will create:

  • Tensorboard logs with training and validation metrics,
  • checkpoints of the best models,
  • a zip file with predictions for the test sets, which is a valid submission for the KLEJ benchmark.

The zip file can be submitted at the klejbenchmark.com website for the evaluation on the test sets.

Custom Training

It's also possible to train each model separately and customize the training parameters using the klejbenchmark_baselines/main.py script.

License

Apache 2 License

Citation

If you use this code, please cite the following paper:

@inproceedings{rybak-etal-2020-klej,
    title = "{KLEJ}: Comprehensive Benchmark for Polish Language Understanding",
    author = "Rybak, Piotr and Mroczkowski, Robert and Tracz, Janusz and Gawlik, Ireneusz",
    booktitle = "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
    month = jul,
    year = "2020",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://www.aclweb.org/anthology/2020.acl-main.111",
    pages = "1191--1201",
}

Authors

This code was created by the Allegro Machine Learning Research team.

You can contact us at: [email protected]

Owner
Allegro Tech
Allegro Tech Open Source Projects
Allegro Tech
Protein Language Model

ProteinLM We pretrain protein language model based on Megatron-LM framework, and then evaluate the pretrained model results on TAPE (Tasks Assessing P

THUDM 77 Dec 27, 2022
Auto_code_complete is a auto word-completetion program which allows you to customize it on your needs

auto_code_complete is a auto word-completetion program which allows you to customize it on your needs. the model for this program is one of the deep-learning NLP(Natural Language Process) model struc

RUO 2 Feb 22, 2022
Persian Bert For Long-Range Sequences

ParsBigBird: Persian Bert For Long-Range Sequences The Bert and ParsBert algorithms can handle texts with token lengths of up to 512, however, many ta

Sajjad Ayoubi 63 Dec 14, 2022
DeBERTa: Decoding-enhanced BERT with Disentangled Attention

DeBERTa: Decoding-enhanced BERT with Disentangled Attention This repository is the official implementation of DeBERTa: Decoding-enhanced BERT with Dis

Microsoft 1.2k Jan 03, 2023
Conversational text Analysis using various NLP techniques

Conversational text Analysis using various NLP techniques

Rita Anjana 159 Jan 06, 2023
Code examples for my Write Better Python Code series on YouTube.

Write Better Python Code This repository contains the code examples used in my Write Better Python Code series published on YouTube: https:/

858 Dec 29, 2022
Intent parsing and slot filling in PyTorch with seq2seq + attention

PyTorch Seq2Seq Intent Parsing Reframing intent parsing as a human - machine translation task. Work in progress successor to torch-seq2seq-intent-pars

Sean Robertson 159 Apr 04, 2022
A simple command line tool for text to image generation, using OpenAI's CLIP and a BigGAN

artificial intelligence cosmic love and attention fire in the sky a pyramid made of ice a lonely house in the woods marriage in the mountains lantern

Phil Wang 2.3k Jan 01, 2023
The implementation of Parameter Differentiation based Multilingual Neural Machine Translation

The implementation of Parameter Differentiation based Multilingual Neural Machine Translation .

Qian Wang 21 Dec 17, 2022
BERT has a Mouth, and It Must Speak: BERT as a Markov Random Field Language Model

BERT has a Mouth, and It Must Speak: BERT as a Markov Random Field Language Model

303 Dec 17, 2022
Translate U is capable of translating the text present in an image from one language to the other.

Translate U is capable of translating the text present in an image from one language to the other. The app uses OCR and Google translate to identify and translate across 80+ languages.

Neelanjan Manna 1 Dec 22, 2021
Transformers implementation for Fall 2021 Clinic

Installation Download miniconda3 if not already installed You can check by running typing conda in command prompt. Use conda to create an environment

Aakash Tripathi 1 Oct 28, 2021
GCRC: A Gaokao Chinese Reading Comprehension dataset for interpretable Evaluation

GCRC GCRC: A New Challenging MRC Dataset from Gaokao Chinese for Explainable Eva

Yunxiao Zhao 5 Nov 04, 2022
MiCECo - Misskey Custom Emoji Counter

MiCECo Misskey Custom Emoji Counter Introduction This little script counts custo

7 Dec 25, 2022
To create a deep learning model which can explain the content of an image in the form of speech through caption generation with attention mechanism on Flickr8K dataset.

To create a deep learning model which can explain the content of an image in the form of speech through caption generation with attention mechanism on Flickr8K dataset.

Ragesh Hajela 0 Feb 08, 2022
Generating new names based on trends in data using GPT2 (Transformer network)

MLOpsNameGenerator Overall Goal The goal of the project is to develop a model that is capable of creating Pokémon names based on its description, usin

Gustav Lang Moesmand 2 Jan 10, 2022
VampiresVsWerewolves - Our Implementation of a MiniMax algorithm with alpha beta pruning in the context of an in-class competition

VampiresVsWerewolves Our Implementation of a MiniMax algorithm with alpha beta pruning in the context of an in-class competition. Our Algorithm finish

Shawn 1 Jan 21, 2022
I label phrases on a scale of five values: negative, somewhat negative, neutral, somewhat positive, positive

I label phrases on a scale of five values: negative, somewhat negative, neutral, somewhat positive, positive. Obstacles like sentence negation, sarcasm, terseness, language ambiguity, and many others

1 Jan 13, 2022
String Gen + Word Checker

Creates random strings and checks if any of them are a real words. Mostly a waste of time ngl but it is cool to see it work and the fact that it can generate a real random word within10sec

1 Jan 06, 2022