Handwritten Text Recognition (HTR) using TensorFlow 2.x

Overview

Handwritten Text Recognition (HTR) system implemented using TensorFlow 2.x and trained on the Bentham/IAM/Rimes/Saint Gall/Washington offline HTR datasets. This Neural Network model recognizes the text contained in the images of segmented texts lines.

Data partitioning (train, validation, test) was performed following the methodology of each dataset. The project implemented the HTRModel abstraction model (inspired by CTCModel) as a way to facilitate the development of HTR systems.

Notes:

  1. All references are commented in the code.
  2. This project doesn't offer post-processing, such as Statistical Language Model.
  3. Check out the presentation in the doc folder.
  4. For more information and demo run step by step, check out the tutorial on Google Colab/Drive.

Datasets supported

a. Bentham

b. IAM

c. Rimes

d. Saint Gall

e. Washington

Requirements

  • Python 3.x
  • OpenCV 4.x
  • editdistance
  • TensorFlow 2.x

Command line arguments

  • --source: dataset/model name (bentham, iam, rimes, saintgall, washington)
  • --arch: network to be used (puigcerver, bluche, flor)
  • --transform: transform dataset to the HDF5 file
  • --cv2: visualize sample from transformed dataset
  • --kaldi_assets: save all assets for use with kaldi
  • --image: predict a single image with the source parameter
  • --train: train model using the source argument
  • --test: evaluate and predict model using the source argument
  • --norm_accentuation: discard accentuation marks in the evaluation
  • --norm_punctuation: discard punctuation marks in the evaluation
  • --epochs: number of epochs
  • --batch_size: number of the size of each batch

Tutorial (Google Colab/Drive)

A Jupyter Notebook is available to demo run, check out the tutorial on Google Colab/Drive.

Sample

Bentham sample with default parameters in the tutorial file.

  1. Preprocessed image (network input)
  2. TE_L: Ground Truth Text (label)
  3. TE_P: Predicted text (network output)

Citation

If this project helped in any way in your research work, feel free to cite the following papers.

HTR-Flor++: A Handwritten Text Recognition System Based on a Pipeline of Optical and Language Models (here)

This work aimed to propose a different pipeline for Handwritten Text Recognition (HTR) systems in post-processing, using two steps to correct the output text. The first step aimed to correct the text at the character level (using N-gram model). The second step had the objective of correcting the text at the word level (using a word frequency dictionary). The experiment was validated in the IAM dataset and compared to the best works proposed within this data scenario.

@inproceedings{10.1145/3395027.3419603,
    author      = {Neto, Arthur F. S. and Bezerra, Byron L. D. and Toselli, Alejandro H. and Lima, Estanislau B.},
    title       = {{HTR-Flor++:} A Handwritten Text Recognition System Based on a Pipeline of Optical and Language Models},
    booktitle   = {Proceedings of the ACM Symposium on Document Engineering 2020},
    year        = {2020},
    publisher   = {Association for Computing Machinery},
    address     = {New York, NY, USA},
    location    = {Virtual Event, CA, USA},
    series      = {DocEng '20},
    isbn        = {9781450380003},
    url         = {https://doi.org/10.1145/3395027.3419603},
    doi         = {10.1145/3395027.3419603},
}

Towards the Natural Language Processing as Spelling Correction for Offline Handwritten Text Recognition Systems (here)

This work aimed a deep study within the research field of Natural Language Processing (NLP), and to bring its approaches to the research field of Handwritten Text Recognition (HTR). Thus, for the experiment and validation, we used 5 datasets (Bentham, IAM, RIMES, Saint Gall and Washington), 3 optical models (Bluche, Puigcerver, Flor), and 8 techniques for text correction in post-processing, including approaches statistics and neural networks, such as encoder-decoder models (seq2seq and Transformers).

@article{10.3390/app10217711,
    author  = {Neto, Arthur F. S. and Bezerra, Byron L. D. and Toselli, Alejandro H.},
    title   = {Towards the Natural Language Processing as Spelling Correction for Offline Handwritten Text Recognition Systems},
    journal = {Applied Sciences},
    pages   = {1-29},
    month   = {10},
    year    = {2020},
    volume  = {10},
    number  = {21},
    url     = {https://doi.org/10.3390/app10217711},
    doi     = {10.3390/app10217711},
}

HDSR-Flor: A Robust End-to-End System to Solve the Handwritten Digit String Recognition Problem in Real Complex Scenarios (here)

This work aimed to propose the optical model for Handwritten Digit String Recognition (HDSR) and compare it with the state-of-the-art models. The International Conference on Frontiers of Handwriting Recognition (ICFHR) 2014 competition on HDSR were used as baselines toevaluate the effectiveness of our proposal, whose metrics, datasets and recognition methods were adopted for fair comparison. Furthermore, we also use a private dataset (Brazilian Bank Check - Courtesy Amount Recognition), and 11 different approaches from the state-of-the-art in HDSR, as well as 2 optical models from the state-of-the-art in Handwritten Text Recognition (HTR).

@article{10.1109/ACCESS.2020.3039003,
    author  = {Neto, Arthur F. S. and Bezerra, Byron L. D. and Lima, Estanislau B. and Toselli, Alejandro H.},
    title   = {{HDSR-Flor:} A Robust End-to-End System to Solve the Handwritten Digit String Recognition Problem in Real Complex Scenarios},
    journal = {IEEE Access},
    pages   = {208543-208553},
    month   = {11},
    year    = {2020},
    volume  = {8},
    isbn    = {2169-3536},
    url     = {https://doi.org/10.1109/ACCESS.2020.3039003},
    doi     = {10.1109/ACCESS.2020.3039003},
}

HTR-Flor: A Deep Learning System for Offline Handwritten Text Recognition (here)

This work aimed to propose the optical model for Handwritten Text Recognition (HTR) and compare it with the state-of-the-art models. The performance comparison was validated in 5 different datasets (Bentham, IAM, RIMES, Saint Gall and Washington). In addition, it was considered one of the best papers in the 33rd SIBGRAPI (2020).

@inproceedings{10.1109/SIBGRAPI51738.2020.00016,
    author      = {Neto, Arthur F. S. and Bezerra, Byron L. D. and Toselli, Alejandro H. and Lima, Estanislau B.},
    title       = {{HTR-Flor:} A Deep Learning System for Offline Handwritten Text Recognition},
    booktitle   = {2020 33rd SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI)},
    pages       = {54-61},
    month       = {11},
    year        = {2020},
    location    = {Recife/Porto de Galinhas, PE, Brazil},
    series      = {SIBGRAPI' 33},
    publisher   = {IEEE Computer Society},
    address     = {Los Alamitos, CA, USA},
    url         = {https://doi.org/10.1109/SIBGRAPI51738.2020.00016},
    doi         = {10.1109/SIBGRAPI51738.2020.00016},
}
You might also like...
A Tensorflow model for text recognition (CNN + seq2seq with visual attention) available as a Python package and compatible with Google Cloud ML Engine.
A Tensorflow model for text recognition (CNN + seq2seq with visual attention) available as a Python package and compatible with Google Cloud ML Engine.

Attention-based OCR Visual attention-based OCR model for image recognition with additional tools for creating TFRecords datasets and exporting the tra

A curated list of resources for text detection/recognition (optical character recognition ) with deep learning methods.
A curated list of resources for text detection/recognition (optical character recognition ) with deep learning methods.

awesome-deep-text-detection-recognition A curated list of awesome deep learning based papers on text detection and recognition. Text Detection Papers

Text recognition (optical character recognition) with deep learning methods.
Text recognition (optical character recognition) with deep learning methods.

What Is Wrong With Scene Text Recognition Model Comparisons? Dataset and Model Analysis | paper | training and evaluation data | failure cases and cle

text detection mainly based on ctpn model in tensorflow, id card detect, connectionist text proposal network
text detection mainly based on ctpn model in tensorflow, id card detect, connectionist text proposal network

text-detection-ctpn Scene text detection based on ctpn (connectionist text proposal network). It is implemented in tensorflow. The origin paper can be

Code for the paper STN-OCR: A single Neural Network for Text Detection and Text Recognition

STN-OCR: A single Neural Network for Text Detection and Text Recognition This repository contains the code for the paper: STN-OCR: A single Neural Net

OCR, Scene-Text-Understanding, Text Recognition

Scene-Text-Understanding Survey [2015-PAMI] Text Detection and Recognition in Imagery: A Survey paper [2014-Front.Comput.Sci] Scene Text Detection and

Sign Language Recognition service utilizing a deep learning model with Long Short-Term Memory to perform sign language recognition.
Sign Language Recognition service utilizing a deep learning model with Long Short-Term Memory to perform sign language recognition.

Sign Language Recognition Service This is a Sign Language Recognition service utilizing a deep learning model with Long Short-Term Memory to perform s

CUTIE (TensorFlow implementation of Convolutional Universal Text Information Extractor)
CUTIE (TensorFlow implementation of Convolutional Universal Text Information Extractor)

CUTIE TensorFlow implementation of the paper "CUTIE: Learning to Understand Documents with Convolutional Universal Text Information Extractor." Xiaohu

Comments
  • Bump tensorflow from 2.9.1 to 2.9.3

    Bump tensorflow from 2.9.1 to 2.9.3

    Bumps tensorflow from 2.9.1 to 2.9.3.

    Release notes

    Sourced from tensorflow's releases.

    TensorFlow 2.9.3

    Release 2.9.3

    This release introduces several vulnerability fixes:

    TensorFlow 2.9.2

    Release 2.9.2

    This releases introduces several vulnerability fixes:

    ... (truncated)

    Changelog

    Sourced from tensorflow's changelog.

    Release 2.9.3

    This release introduces several vulnerability fixes:

    Release 2.8.4

    This release introduces several vulnerability fixes:

    ... (truncated)

    Commits
    • a5ed5f3 Merge pull request #58584 from tensorflow/vinila21-patch-2
    • 258f9a1 Update py_func.cc
    • cd27cfb Merge pull request #58580 from tensorflow-jenkins/version-numbers-2.9.3-24474
    • 3e75385 Update version numbers to 2.9.3
    • bc72c39 Merge pull request #58482 from tensorflow-jenkins/relnotes-2.9.3-25695
    • 3506c90 Update RELEASE.md
    • 8dcb48e Update RELEASE.md
    • 4f34ec8 Merge pull request #58576 from pak-laura/c2.99f03a9d3bafe902c1e6beb105b2f2417...
    • 6fc67e4 Replace CHECK with returning an InternalError on failing to create python tuple
    • 5dbe90a Merge pull request #58570 from tensorflow/r2.9-7b174a0f2e4
    • Additional commits viewable in compare view

    Dependabot compatibility score

    Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.


    Dependabot commands and options

    You can trigger Dependabot actions by commenting on this PR:

    • @dependabot rebase will rebase this PR
    • @dependabot recreate will recreate this PR, overwriting any edits that have been made to it
    • @dependabot merge will merge this PR after your CI passes on it
    • @dependabot squash and merge will squash and merge this PR after your CI passes on it
    • @dependabot cancel merge will cancel a previously requested merge and block automerging
    • @dependabot reopen will reopen this PR if it is closed
    • @dependabot close will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually
    • @dependabot ignore this major version will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this minor version will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this dependency will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
    • @dependabot use these labels will set the current labels as the default for future PRs for this repo and language
    • @dependabot use these reviewers will set the current reviewers as the default for future PRs for this repo and language
    • @dependabot use these assignees will set the current assignees as the default for future PRs for this repo and language
    • @dependabot use this milestone will set the current milestone as the default for future PRs for this repo and language

    You can disable automated security fix PRs for this repo from the Security Alerts page.

    dependencies 
    opened by dependabot[bot] 0
  • Bump tensorflow from 2.3.0 to 2.3.1

    Bump tensorflow from 2.3.0 to 2.3.1

    Bumps tensorflow from 2.3.0 to 2.3.1.

    Release notes

    Sourced from tensorflow's releases.

    TensorFlow 2.3.1

    Release 2.3.1

    Bug Fixes and Other Changes

    Changelog

    Sourced from tensorflow's changelog.

    Release 2.3.1

    Bug Fixes and Other Changes

    Release 2.2.1

    ... (truncated)

    Commits
    • fcc4b96 Merge pull request #43446 from tensorflow-jenkins/version-numbers-2.3.1-16251
    • 4cf2230 Update version numbers to 2.3.1
    • eee8224 Merge pull request #43441 from tensorflow-jenkins/relnotes-2.3.1-24672
    • 0d41b1d Update RELEASE.md
    • d99bd63 Insert release notes place-fill
    • d71d3ce Merge pull request #43414 from tensorflow/mihaimaruseac-patch-1-1
    • 9c91596 Fix missing import
    • f9f12f6 Merge pull request #43391 from tensorflow/mihaimaruseac-patch-4
    • 3ed271b Solve leftover from merge conflict
    • 9cf3773 Merge pull request #43358 from tensorflow/mm-patch-r2.3
    • Additional commits viewable in compare view

    Dependabot compatibility score

    Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.


    Dependabot commands and options

    You can trigger Dependabot actions by commenting on this PR:

    • @dependabot rebase will rebase this PR
    • @dependabot recreate will recreate this PR, overwriting any edits that have been made to it
    • @dependabot merge will merge this PR after your CI passes on it
    • @dependabot squash and merge will squash and merge this PR after your CI passes on it
    • @dependabot cancel merge will cancel a previously requested merge and block automerging
    • @dependabot reopen will reopen this PR if it is closed
    • @dependabot close will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually
    • @dependabot ignore this major version will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this minor version will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this dependency will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
    • @dependabot use these labels will set the current labels as the default for future PRs for this repo and language
    • @dependabot use these reviewers will set the current reviewers as the default for future PRs for this repo and language
    • @dependabot use these assignees will set the current assignees as the default for future PRs for this repo and language
    • @dependabot use this milestone will set the current milestone as the default for future PRs for this repo and language

    You can disable automated security fix PRs for this repo from the Security Alerts page.

    dependencies 
    opened by dependabot[bot] 0
Releases(v0.0.6)
零样本学习测评基准,中文版

ZeroCLUE 零样本学习测评基准,中文版 零样本学习是AI识别方法之一。 简单来说就是识别从未见过的数据类别,即训练的分类器不仅仅能够识别出训练集中已有的数据类别, 还可以对于来自未见过的类别的数据进行区分。 这是一个很有用的功能,使得计算机能够具有知识迁移的能力,并无需任何训练数据, 很符合现

CLUE benchmark 27 Dec 10, 2022
Toolbox for OCR post-correction

Ochre Ochre is a toolbox for OCR post-correction. Please note that this software is experimental and very much a work in progress! Overview of OCR pos

National Library of the Netherlands / Research 117 Nov 10, 2022
A general list of resources to image text localization and recognition 场景文本位置感知与识别的论文资源与实现合集 シーンテキストの位置認識と識別のための論文リソースの要約

Scene Text Localization & Recognition Resources Read this institute-wise: English, 简体中文. Read this year-wise: English, 简体中文. Tags: [STL] (Scene Text L

Karl Lok (Zhaokai Luo) 901 Dec 11, 2022
利用Paddle框架复现CRAFT

CRAFT-Paddle 利用Paddle框架复现CRAFT CRAFT 本项目基于paddlepaddle框架复现CRAFT,并参加百度第三届论文复现赛,将在2021年5月15日比赛完后提供AIStudio链接~敬请期待 参考项目: CRAFT: Character-Region Awarenes

QuanHao Guo 2 Mar 07, 2022
BNF Globalization Code (CVPR 2016)

Boundary Neural Fields Globalization This is the code for Boundary Neural Fields globalization method. The technical report of the method can be found

25 Apr 15, 2022
BD-ALL-DIGIT - This Is Bangladeshi All Sim Cloner Tools

BANGLADESHI ALL SIM CLONER TOOLS INSTALL TOOL ON TERMUX $ apt update $ apt upgra

MAHADI HASAN AFRIDI 2 Jan 19, 2022
Primary QPDF source code and documentation

QPDF QPDF is a command-line tool and C++ library that performs content-preserving transformations on PDF files. It supports linearization, encryption,

QPDF 2.2k Jan 04, 2023
Deskew is a command line tool for deskewing scanned text documents. It uses Hough transform to detect "text lines" in the image. As an output, you get an image rotated so that the lines are horizontal.

Deskew by Marek Mauder https://galfar.vevb.net/deskew https://github.com/galfar/deskew v1.30 2019-06-07 Overview Deskew is a command line tool for des

Marek Mauder 127 Dec 03, 2022
This project proposes a camera vision based cursor control system, using hand moment captured from a webcam through a landmarks of hand by using Mideapipe module

This project proposes a camera vision based cursor control system, using hand moment captured from a webcam through a landmarks of hand by using Mideapipe module

Chandru 2 Feb 20, 2022
learn how to use Gesture Control to change the volume of a computer

Volume-Control-using-gesture In this project we are going to learn how to use Gesture Control to change the volume of a computer. We first look into h

Diwas Pandey 49 Sep 22, 2022
CRAFT-Pyotorch:Character Region Awareness for Text Detection Reimplementation for Pytorch

CRAFT-Reimplementation Note:If you have any problems, please comment. Or you can join us weChat group. The QR code will update in issues #49 . Reimple

453 Dec 28, 2022
SCOUTER: Slot Attention-based Classifier for Explainable Image Recognition

SCOUTER: Slot Attention-based Classifier for Explainable Image Recognition PDF Abstract Explainable artificial intelligence has been gaining attention

87 Dec 26, 2022
Fully-automated scripts for collecting AI-related papers

AI-Paper-Collector Web demo: https://ai-paper-collector.vercel.app/ (recommended) Colab notebook: here Motivation Fully-automated scripts for collecti

772 Dec 30, 2022
Dataset and Code for ICCV 2021 paper "Real-world Video Super-resolution: A Benchmark Dataset and A Decomposition based Learning Scheme"

Dataset and Code for RealVSR Real-world Video Super-resolution: A Benchmark Dataset and A Decomposition based Learning Scheme Xi Yang, Wangmeng Xiang,

Xi Yang 91 Nov 22, 2022
Use Convolutional Recurrent Neural Network to recognize the Handwritten line text image without pre segmentation into words or characters. Use CTC loss Function to train.

Handwritten Line Text Recognition using Deep Learning with Tensorflow Description Use Convolutional Recurrent Neural Network to recognize the Handwrit

sushant097 224 Jan 07, 2023
Python-based tools for document analysis and OCR

ocropy OCRopus is a collection of document analysis programs, not a turn-key OCR system. In order to apply it to your documents, you may need to do so

OCRopus 3.2k Dec 31, 2022
Image augmentation for machine learning experiments.

imgaug This python library helps you with augmenting images for your machine learning projects. It converts a set of input images into a new, much lar

Alexander Jung 13.2k Jan 02, 2023
This is the official PyTorch implementation of the paper "TransFG: A Transformer Architecture for Fine-grained Recognition" (Ju He, Jie-Neng Chen, Shuai Liu, Adam Kortylewski, Cheng Yang, Yutong Bai, Changhu Wang, Alan Yuille).

TransFG: A Transformer Architecture for Fine-grained Recognition Official PyTorch code for the paper: TransFG: A Transformer Architecture for Fine-gra

Ju He 307 Jan 03, 2023
MeshToGeotiff - A fast Python algorithm to convert a 3D mesh into a GeoTIFF

MeshToGeotiff - A fast Python algorithm to convert a 3D mesh into a GeoTIFF Python class for converting (very fast) 3D Meshes/Surfaces to Raster DEMs

8 Sep 10, 2022
An organized collection of tutorials and projects created for aspriring computer vision students.

A repository created with the purpose of teaching students in BME lab 308A- Hanoi University of Science and Technology

Givralnguyen 5 Nov 24, 2021