Weakly Supervised End-to-End Learning (NeurIPS 2021)

Overview

WeaSEL: Weakly Supervised End-to-end Learning

Python PyTorch Lightning Config: hydra license

This is a PyTorch-Lightning-based framework, based on our End-to-End Weak Supervision paper (NeurIPS 2021), that allows you to train your favorite neural network for weakly-supervised classification1

  • only with multiple labeling functions (LFs)2, i.e. without any labeled training data!
  • in an end-to-end manner, i.e. directly train and evaluate your neural net (end-model from here on), there's no need to train a separate label model any more as in Snorkel & co,
  • with better test set performance and enhanced robustness against correlated or inaccurate LFs than prior methods like Snorkel

1 This includes learning from crowdsourced labels or annotations!
2 LFs are labeling heuristics, that output noisy labels for (subsets of) the training data (e.g. crowdworkers or keyword detectors).

Credits

Getting Started

This library assumes familiarity with (multi-source) weak supervision, if that's not the case you may want to first learn its basics in e.g. this overview slides from Stanford or this Snorkel tutorial.

That being said, have a look at our examples and the notebooks therein showing you how to use Weasel for your own dataset, LF set, or end-model. E.g.:

Reproducibility

Please have a look at the research code branch, which operates on pure PyTorch.

Installation

1. New environment (recommended, but optional)
conda create --name weasel python=3.7  # or other python version >=3.7
conda activate weasel  
2a: From source
python -m pip install git+https://github.com/autonlab/weasel#egg=weasel[all]
2b: From source, editable install
git clone https://github.com/autonlab/weasel.git
cd weasel
pip install -e .[all]

Minimal dependencies

Minimal dependencies, in particular not using Hydra, can be installed with

python -m pip install git+https://github.com/autonlab/weasel

The needed environment corresponds to conda env create -f env_gpu_minimal.yml.

If you choose to use this variant, you won't be able to run some of the examples: You may want to have a look at this notebook that walks you through how to use Weasel without Hydra as the config manager.

Note: Weasel is under active development, some uncovered edge cases might exist, and any feedback is very welcomed!

Apply WeaSEL to your own problem

Configuration with Hydra

Optional: This template config will help you get started with your own application, an analogous config is used in this tutorial script that you may want to check out.

Pre-defined or custom downstream models & Baselines

Please have a look at the detailed instructions in this Readme.

Using your own dataset and/or labeling heuristics

Please have a look at the detailed instructions in this Readme.

Citation

@article{cachay2021endtoend,
  author={R{\"u}hling Cachay, Salva and Boecking, Benedikt and Dubrawski, Artur},
  journal={Advances in Neural Information Processing Systems}, 
  title={End-to-End Weak Supervision},
  year={2021}
}
Owner
Auton Lab, Carnegie Mellon University
Auton Lab, Carnegie Mellon University
A new benchmark for Icon Question Answering (IconQA) and a large-scale icon dataset Icon645.

IconQA About IconQA is a new diverse abstract visual question answering dataset that highlights the importance of abstract diagram understanding and c

Pan Lu 24 Dec 30, 2022
The source code for Adaptive Kernel Graph Neural Network at AAAI2022

AKGNN The source code for Adaptive Kernel Graph Neural Network at AAAI2022. Please cite our paper if you think our work is helpful to you: @inproceedi

11 Nov 25, 2022
Cards Against Humanity AI

cah-ai This is a Cards Against Humanity AI implemented using a pre-trained Semantic Search model. How it works A player is described by a combination

Alex Nichol 2 Aug 22, 2022
IAUnet: Global Context-Aware Feature Learning for Person Re-Identification

IAUnet This repository contains the code for the paper: IAUnet: Global Context-Aware Feature Learning for Person Re-Identification Ruibing Hou, Bingpe

30 Jul 14, 2022
HINet: Half Instance Normalization Network for Image Restoration

HINet: Half Instance Normalization Network for Image Restoration Liangyu Chen, Xin Lu, Jie Zhang, Xiaojie Chu, Chengpeng Chen Paper: https://arxiv.org

303 Dec 31, 2022
Official implementation for "Low-light Image Enhancement via Breaking Down the Darkness"

Low-light Image Enhancement via Breaking Down the Darkness by Qiming Hu, Xiaojie Guo. 1. Dependencies Python3 PyTorch=1.0 OpenCV-Python, TensorboardX

Qiming Hu 30 Jan 01, 2023
Banglore House Prediction Using Flask Server (Python)

Banglore House Prediction Using Flask Server (Python) 🌐 Links 🌐 📂 Repo In this repository, I've implemented a Machine Learning-based Bangalore Hous

Dhyan Shah 1 Jan 24, 2022
TensorFlow implementation for Bayesian Modeling and Uncertainty Quantification for Learning to Optimize: What, Why, and How

Bayesian Modeling and Uncertainty Quantification for Learning to Optimize: What, Why, and How TensorFlow implementation for Bayesian Modeling and Unce

Shen Lab at Texas A&M University 8 Sep 02, 2022
[ICLR 2021] "Neural Architecture Search on ImageNet in Four GPU Hours: A Theoretically Inspired Perspective" by Wuyang Chen, Xinyu Gong, Zhangyang Wang

Neural Architecture Search on ImageNet in Four GPU Hours: A Theoretically Inspired Perspective [PDF] Wuyang Chen, Xinyu Gong, Zhangyang Wang In ICLR 2

VITA 156 Nov 28, 2022
Tzer: TVM Implementation of "Coverage-Guided Tensor Compiler Fuzzing with Joint IR-Pass Mutation (OOPSLA'22)“.

Artifact • Reproduce Bugs • Quick Start • Installation • Extend Tzer Coverage-Guided Tensor Compiler Fuzzing with Joint IR-Pass Mutation This is the s

12 Dec 29, 2022
A machine learning package for streaming data in Python. The other ancestor of River.

scikit-multiflow is a machine learning package for streaming data in Python. creme and scikit-multiflow are merging into a new project called River. W

670 Dec 30, 2022
Code for: Gradient-based Hierarchical Clustering using Continuous Representations of Trees in Hyperbolic Space. Nicholas Monath, Manzil Zaheer, Daniel Silva, Andrew McCallum, Amr Ahmed. KDD 2019.

gHHC Code for: Gradient-based Hierarchical Clustering using Continuous Representations of Trees in Hyperbolic Space. Nicholas Monath, Manzil Zaheer, D

Nicholas Monath 35 Nov 16, 2022
CLASP - Contrastive Language-Aminoacid Sequence Pretraining

CLASP - Contrastive Language-Aminoacid Sequence Pretraining Repository for creating models pretrained on language and aminoacid sequences similar to C

Michael Pieler 133 Dec 29, 2022
AFL binary instrumentation

E9AFL --- Binary AFL E9AFL inserts American Fuzzy Lop (AFL) instrumentation into x86_64 Linux binaries. This allows binaries to be fuzzed without the

242 Dec 12, 2022
Official repository of the AAAI'2022 paper "Contrast and Generation Make BART a Good Dialogue Emotion Recognizer"

CoG-BART Contrast and Generation Make BART a Good Dialogue Emotion Recognizer Quick Start: To run the model on test sets of four datasets, Download th

39 Dec 24, 2022
Analysis of Smiles through reservoir sampling & RDkit

Analysis of Smiles through reservoir sampling and machine learning (under development). This is a simple project that includes two Jupyter files for t

Aurimas A. Nausėdas 6 Aug 30, 2022
Implementation of Hierarchical Transformer Memory (HTM) for Pytorch

Hierarchical Transformer Memory (HTM) - Pytorch Implementation of Hierarchical Transformer Memory (HTM) for Pytorch. This Deepmind paper proposes a si

Phil Wang 63 Dec 29, 2022
Code for the TPAMI paper: "Syntax Customized Video Captioning by Imitating Exemplar Sentences"

Syntax-Customized-Video-Captioning Code for the TPAMI paper: "Syntax Customized Video Captioning by Imitating Exemplar Sentences". This is my second w

3 Dec 05, 2022
Potato Disease Classification - Training, Rest APIs, and Frontend to test.

Potato Disease Classification Setup for Python: Install Python (Setup instructions) Install Python packages pip3 install -r training/requirements.txt

codebasics 95 Dec 21, 2022
The hippynn python package - a modular library for atomistic machine learning with pytorch.

The hippynn python package - a modular library for atomistic machine learning with pytorch. We aim to provide a powerful library for the training of a

Los Alamos National Laboratory 37 Dec 29, 2022