TensorFlow implementation for Bayesian Modeling and Uncertainty Quantification for Learning to Optimize: What, Why, and How

Overview

Bayesian Modeling and Uncertainty Quantification for Learning to Optimize: What, Why, and How

TensorFlow implementation for Bayesian Modeling and Uncertainty Quantification for Learning to Optimize: What, Why, and How

Yuning You, Yue Cao, Tianlong Chen, Zhangyang Wang, Yang Shen

In ICLR 2022.

Overview

In this repository, we perform Bayesian modeling in learning to optimize techniques, to address the practical need of accessment and quantification of optimization uncertainty. Experiments are conducted on optimizations in test functions, privacy attacks and protein docking.

Environments

Create conda environment via:

conda env create -f environment.yml
cd sonnet_modified_files

and then copy files: basic.py, gated_rnn.py into the conda environment directory as:

cp gate_rnn.py $CONDAENV_PATH/envs/tf_gpu_1.14/lib/python3.7/site-packages/sonnet/python/modules/
cp basic.py $CONDAENV_PATH/envs/tf_gpu_1.14/lib/python3.7/site-packages/sonnet/python/modules/

Training & Evaluation

mkdir ./weights; mkdir ./logs; cd src

Stage 1 training:

python train_dm_rs_cl.py --problem $problem_name --stage 1 --save_path ../weights/${problem_name}_stage1.ckpt

Stage 2 Bayesian training:

python train_dm_rs_cl.py --problem $problem_name --stage 2 --restore_path ../weights/${problem_name}_stage1.ckpt --save_path ../weights/${problem_name}_stage2.ckpt --lambda1 0.1

Evaluation:

python evaluate.py --problem $problem_name --path ../weights/${problem_name}_stage2.ckpt --output ../logs/${problem_name}.log --mode test

where

  • $problem_name = rastrigin06, rastrigin12, rastrigin18, rastrigin24, rastrigin30 means train on test function rastrigin on dim=6, 12, 18, 24, 30, respectively.
  • $problem_name = ackley06, ackley12, ackley18, ackley24, ackley30.
  • $problem_name = griewank06, griewank12, griewank18, griewank24, griewank30.
  • $problem_name = privacy_attack means privacy_attack experiment.
  • $problem_name = protein_dock means protein docking experiment.

and you can select $lambda1 from {10, 1, 0.1, 0.01, 0.001}.

Citation

If you use this code for you research, please cite our paper.

TBD
Owner
Shen Lab at Texas A&M University
Shen Lab at Texas A&M University
code for Multi-scale Matching Networks for Semantic Correspondence, ICCV

MMNet This repo is the official implementation of ICCV 2021 paper "Multi-scale Matching Networks for Semantic Correspondence.". Pre-requisite conda cr

joey zhao 25 Dec 12, 2022
Official PyTorch Implementation of Mask-aware IoU and maYOLACT Detector [BMVC2021]

The official implementation of Mask-aware IoU and maYOLACT detector. Our implementation is based on mmdetection. Mask-aware IoU for Anchor Assignment

Kemal Oksuz 46 Sep 29, 2022
[ICLR 2021] Rank the Episodes: A Simple Approach for Exploration in Procedurally-Generated Environments.

[ICLR 2021] RAPID: A Simple Approach for Exploration in Reinforcement Learning This is the Tensorflow implementation of ICLR 2021 paper Rank the Episo

Daochen Zha 48 Nov 21, 2022
BisQue is a web-based platform designed to provide researchers with organizational and quantitative analysis tools for 5D image data. Users can extend BisQue by implementing containerized ML workflows.

Overview BisQue is a web-based platform specifically designed to provide researchers with organizational and quantitative analysis tools for up to 5D

Vision Research Lab @ UCSB 26 Nov 29, 2022
Official Python implementation of the 'Sparse deconvolution'-v0.3.0

Sparse deconvolution Python v0.3.0 Official Python implementation of the 'Sparse deconvolution', and the CPU (NumPy) and GPU (CuPy) calculation backen

Weisong Zhao 23 Dec 28, 2022
Semantic Segmentation in Pytorch

PyTorch Semantic Segmentation Introduction This repository is a PyTorch implementation for semantic segmentation / scene parsing. The code is easy to

Hengshuang Zhao 1.2k Jan 01, 2023
iNAS: Integral NAS for Device-Aware Salient Object Detection

iNAS: Integral NAS for Device-Aware Salient Object Detection Introduction Integral search design (jointly consider backbone/head structures, design/de

顾宇超 77 Dec 02, 2022
A library for augmentation of a YOLO-formated dataset

YOLO Dataset Augmentation lib Инструкция по использованию этой библиотеки Запуск всех файлов осуществлять из консоли. GoogleCrawl_to_Dataset.py Это ск

Egor Orel 1 Dec 10, 2022
Contains source code for the winning solution of the xView3 challenge

Winning Solution for xView3 Challenge This repository contains source code and pretrained models for my (Eugene Khvedchenya) solution to xView 3 Chall

Eugene Khvedchenya 51 Dec 30, 2022
Official code for "End-to-End Optimization of Scene Layout" -- including VAE, Diff Render, SPADE for colorization (CVPR 2020 Oral)

End-to-End Optimization of Scene Layout Code release for: End-to-End Optimization of Scene Layout CVPR 2020 (Oral) Project site, Bibtex For help conta

Andrew Luo 41 Dec 09, 2022
Pyramid Pooling Transformer for Scene Understanding

Pyramid Pooling Transformer for Scene Understanding Requirements: torch 1.6+ torchvision 0.7.0 timm==0.3.2 Validated on torch 1.6.0, torchvision 0.7.0

Yu-Huan Wu 119 Dec 29, 2022
Trying to understand alias-free-gan.

alias-free-gan-explanation Trying to understand alias-free-gan in my own way. [Chinese Version 中文版本] CC-BY-4.0 License. Tzu-Heng Lin motivation of thi

Tzu-Heng Lin 12 Mar 17, 2022
A universal framework for learning timestamp-level representations of time series

TS2Vec This repository contains the official implementation for the paper Learning Timestamp-Level Representations for Time Series with Hierarchical C

Zhihan Yue 284 Dec 30, 2022
Implementing SYNTHESIZER: Rethinking Self-Attention in Transformer Models using Pytorch

Implementing SYNTHESIZER: Rethinking Self-Attention in Transformer Models using Pytorch Reference Paper URL Author: Yi Tay, Dara Bahri, Donald Metzler

Myeongjun Kim 66 Nov 30, 2022
Official source code of paper 'IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo'

IterMVS official source code of paper 'IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo' Introduction IterMVS is a novel lear

Fangjinhua Wang 127 Jan 04, 2023
WiFi-based Multi-task Sensing

WiFi-based Multi-task Sensing Introduction WiFi-based sensing has aroused immense attention as numerous studies have made significant advances over re

zhangx289 6 Nov 24, 2022
Semantic-aware Grad-GAN for Virtual-to-Real Urban Scene Adaption

SG-GAN TensorFlow implementation of SG-GAN. Prerequisites TensorFlow (implemented in v1.3) numpy scipy pillow Getting Started Train Prepare dataset. W

lplcor 61 Jun 07, 2022
COLMAP - Structure-from-Motion and Multi-View Stereo

COLMAP About COLMAP is a general-purpose Structure-from-Motion (SfM) and Multi-View Stereo (MVS) pipeline with a graphical and command-line interface.

4.7k Jan 07, 2023
Pytorch Implementation of LNSNet for Superpixel Segmentation

LNSNet Overview Official implementation of Learning the Superpixel in a Non-iterative and Lifelong Manner (CVPR'21) Learning Strategy The proposed LNS

42 Oct 11, 2022
Simple and Effective Few-Shot Named Entity Recognition with Structured Nearest Neighbor Learning

structshot Code and data for paper "Simple and Effective Few-Shot Named Entity Recognition with Structured Nearest Neighbor Learning", Yi Yang and Arz

ASAPP Research 47 Dec 27, 2022