[ICLR 2021] "Neural Architecture Search on ImageNet in Four GPU Hours: A Theoretically Inspired Perspective" by Wuyang Chen, Xinyu Gong, Zhangyang Wang

Overview

Neural Architecture Search on ImageNet in Four GPU Hours: A Theoretically Inspired Perspective [PDF]

Language grade: Python MIT licensed

Wuyang Chen, Xinyu Gong, Zhangyang Wang

In ICLR 2021.

Overview

We present TE-NAS, the first published training-free neural architecture search method with extremely fast search speed (no gradient descent at all!) and high-quality performance.

Highlights:

  • Trainig-free and label-free NAS: we achieved extreme fast neural architecture search without a single gradient descent.
  • Bridging the theory-application gap: We identified two training-free indicators to rank the quality of deep networks: the condition number of their NTKs, and the number of linear regions in their input space.
  • SOTA: TE-NAS achieved extremely fast search speed (one 1080Ti, 20 minutes on NAS-Bench-201 space / four hours on DARTS space on ImageNet) and maintains competitive accuracy.

Prerequisites

  • Ubuntu 16.04
  • Python 3.6.9
  • CUDA 10.1 (lower versions may work but were not tested)
  • NVIDIA GPU + CuDNN v7.3

This repository has been tested on GTX 1080Ti. Configurations may need to be changed on different platforms.

Installation

  • Clone this repo:
git clone https://github.com/chenwydj/TENAS.git
cd TENAS
  • Install dependencies:
pip install -r requirements.txt

Usage

0. Prepare the dataset

  • Please follow the guideline here to prepare the CIFAR-10/100 and ImageNet dataset, and also the NAS-Bench-201 database.
  • Remember to properly set the TORCH_HOME and data_paths in the prune_launch.py.

1. Search

NAS-Bench-201 Space

python prune_launch.py --space nas-bench-201 --dataset cifar10 --gpu 0
python prune_launch.py --space nas-bench-201 --dataset cifar100 --gpu 0
python prune_launch.py --space nas-bench-201 --dataset ImageNet16-120 --gpu 0

DARTS Space (NASNET)

python prune_launch.py --space darts --dataset cifar10 --gpu 0
python prune_launch.py --space darts --dataset imagenet-1k --gpu 0

2. Evaluation

  • For architectures searched on nas-bench-201, the accuracies are immediately available at the end of search (from the console output).
  • For architectures searched on darts, please use DARTS_evaluation for training the searched architecture from scratch and evaluation.

Citation

@inproceedings{chen2020tenas,
  title={Neural Architecture Search on ImageNet in Four GPU Hours: A Theoretically Inspired Perspective},
  author={Chen, Wuyang and Gong, Xinyu and Wang, Zhangyang},
  booktitle={International Conference on Learning Representations},
  year={2021}
}

Acknowledgement

Owner
VITA
Visual Informatics Group @ University of Texas at Austin
VITA
Official page of Struct-MDC (RA-L'22 with IROS'22 option); Depth completion from Visual-SLAM using point & line features

Struct-MDC (click the above buttons for redirection!) Official page of "Struct-MDC: Mesh-Refined Unsupervised Depth Completion Leveraging Structural R

Urban Robotics Lab. @ KAIST 37 Dec 22, 2022
Supervised Contrastive Learning for Downstream Optimized Sequence Representations

SupCL-Seq 📖 Supervised Contrastive Learning for Downstream Optimized Sequence representations (SupCS-Seq) accepted to be published in EMNLP 2021, ext

Hooman Sedghamiz 18 Oct 21, 2022
SVG Icon processing tool for C++

BAWR This is a tool to automate the icons generation from sets of svg files into fonts and atlases. The main purpose of this tool is to add it to the

Frank David Martínez M 66 Dec 14, 2022
Boosted CVaR Classification (NeurIPS 2021)

Boosted CVaR Classification Runtian Zhai, Chen Dan, Arun Sai Suggala, Zico Kolter, Pradeep Ravikumar NeurIPS 2021 Table of Contents Quick Start Train

Runtian Zhai 4 Feb 15, 2022
An end-to-end implementation of intent prediction with Metaflow and other cool tools

You Don't Need a Bigger Boat An end-to-end (Metaflow-based) implementation of an intent prediction flow for kids who can't MLOps good and wanna learn

Jacopo Tagliabue 614 Dec 31, 2022
Revitalizing CNN Attention via Transformers in Self-Supervised Visual Representation Learning

Revitalizing CNN Attention via Transformers in Self-Supervised Visual Representation Learning

ChongjianGE 89 Dec 02, 2022
TianyuQi 10 Dec 11, 2022
The implementation for "Comprehensive Knowledge Distillation with Causal Intervention".

Comprehensive Knowledge Distillation with Causal Intervention This repository is a PyTorch implementation of "Comprehensive Knowledge Distillation wit

Xiang Deng 10 Nov 03, 2022
Open-source implementation of Google Vizier for hyper parameters tuning

Advisor Introduction Advisor is the hyper parameters tuning system for black box optimization. It is the open-source implementation of Google Vizier w

tobe 1.5k Jan 04, 2023
Self-Learned Video Rain Streak Removal: When Cyclic Consistency Meets Temporal Correspondence

In this paper, we address the problem of rain streaks removal in video by developing a self-learned rain streak removal method, which does not require any clean groundtruth images in the training pro

Yang Wenhan 44 Dec 06, 2022
Empirical Study of Transformers for Source Code & A Simple Approach for Handling Out-of-Vocabulary Identifiers in Deep Learning for Source Code

Transformers for variable misuse, function naming and code completion tasks The official PyTorch implementation of: Empirical Study of Transformers fo

Bayesian Methods Research Group 56 Nov 15, 2022
Combine Tacotron2 and Hifi GAN to generate speech from text

EndToEndTextToSpeech Combine Tacotron2 and Hifi GAN to generate speech from text Download weights Hifi GAN - hifi_gan/checkpoint/ : pretrain 2.5M ste

Phạm Quốc Huy 1 Dec 18, 2021
Fre-GAN: Adversarial Frequency-consistent Audio Synthesis

Fre-GAN Vocoder Fre-GAN: Adversarial Frequency-consistent Audio Synthesis Training: python train.py --config config.json Citation: @misc{kim2021frega

Rishikesh (ऋषिकेश) 93 Dec 17, 2022
A toy compiler that can convert Python scripts to pickle bytecode 🥒

Pickora 🐰 A small compiler that can convert Python scripts to pickle bytecode. Requirements Python 3.8+ No third-party modules are required. Usage us

ꌗᖘ꒒ꀤ꓄꒒ꀤꈤꍟ 68 Jan 04, 2023
Code for the ECCV2020 paper "A Differentiable Recurrent Surface for Asynchronous Event-Based Data"

A Differentiable Recurrent Surface for Asynchronous Event-Based Data Code for the ECCV2020 paper "A Differentiable Recurrent Surface for Asynchronous

Marco Cannici 21 Oct 05, 2022
Code to reproduce the results in "Visually Grounded Reasoning across Languages and Cultures", EMNLP 2021.

marvl-code [WIP] This is the implementation of the approaches described in the paper: Fangyu Liu*, Emanuele Bugliarello*, Edoardo M. Ponti, Siva Reddy

25 Nov 15, 2022
PyTorch implementation of TSception V2 using DEAP dataset

TSception This is the PyTorch implementation of TSception V2 using DEAP dataset in our paper: Yi Ding, Neethu Robinson, Su Zhang, Qiuhao Zeng, Cuntai

Yi Ding 27 Dec 15, 2022
CrossMLP - The repository offers the official implementation of our BMVC 2021 paper (oral) in PyTorch.

CrossMLP Cascaded Cross MLP-Mixer GANs for Cross-View Image Translation Bin Ren1, Hao Tang2, Nicu Sebe1. 1University of Trento, Italy, 2ETH, Switzerla

Bingoren 16 Jul 27, 2022
Official PyTorch Implementation of Unsupervised Learning of Scene Flow Estimation Fusing with Local Rigidity

UnRigidFlow This is the official PyTorch implementation of UnRigidFlow (IJCAI2019). Here are two sample results (~10MB gif for each) of our unsupervis

Liang Liu 28 Nov 16, 2022
Junction Tree Variational Autoencoder for Molecular Graph Generation (ICML 2018)

Junction Tree Variational Autoencoder for Molecular Graph Generation Official implementation of our Junction Tree Variational Autoencoder https://arxi

Wengong Jin 418 Jan 07, 2023