《Train in Germany, Test in The USA: Making 3D Object Detectors Generalize》(CVPR 2020)

Overview

Train in Germany, Test in The USA: Making 3D Object Detectors Generalize

This paper has been accpeted by Conference on Computer Vision and Pattern Recognition (CVPR) 2020.

Train in Germany, Test in The USA: Making 3D Object Detectors Generalize

by Yan Wang*, Xiangyu Chen*, Yurong You, Li Erran, Bharath Hariharan, Mark Campbell, Kilian Q. Weinberger, Wei-Lun Chao*

Figure

Dependencies

Usage

Prepare Datasets (Jupyter notebook)

We develop our method on these datasets:

  1. Configure dataset_path in config_path.py.

    Raw datasets will be organized as the following structure:

     dataset_path/
         | kitti/               # KITTI object detection 3D dataset
             | training/
             | testing/
         | argo/                # Argoverse dataset v1.1
             | train1/
             | train2/
             | train3/
             | train4/
             | val/
             | test/
         | nusc/                # nuScenes dataset v1.0
             | maps/
             | samples/
             | sweeps/
             | v1.0-trainval/
         | lyft/                # Lyft Level 5 dataset v1.02
             | v1.02-train/
         | waymo/               # Waymo dataset v1.0
             | training/
             | validation/
     
  2. Download all datasets.

    For KITTI, Argoverse and Waymo, we provide scripts for automatic download.

    cd scripts/
    python download.py [--datasets kitti+argo+waymo]

    nuScenes and Lyft need to downloaded manually.

  3. Convert all datasets to KITTI format.

    cd scripts/
    python -m pip install -r convert_requirements.txt
    python convert.py [--datasets argo+nusc+lyft+waymo]
  4. Split validation set

    We provide the train/val split used in our experiments under split folder.

    cd split/
    python replace_split.py
  5. Generate car subset

    We filter scenes and only keep those with cars.

    cd scripts/
    python gen_car_split.py

Statistical Normalization (Jupyter notebook)

  1. Compute car size statistics of each dataset. The computed statistics are stored as label_stats_{train/val/test}.json under KITTI format dataset root.

    cd stat_norm/
    python stat.py
  2. Generate rescaled datasets according to car size statistics. The rescaled datasets are stored under $dataset_path/rescaled_datasets by default.

    cd stat_norm/
    python norm.py [--path $PATH]

Training (To be updated)

We use PointRCNN to validate our method.

  1. Setup PointRCNN

    cd pointrcnn/
    ./build_and_install.sh
  2. Build datasets in PointRCNN format.

    cd pointrcnn/tools/
    python generate_multi_data.py
    python generate_gt_database.py --root ...
  3. Download the models pretrained on source domains from google drive using gdrive.

    cd pointrcnn/tools/
    gdrive download -r 14MXjNImFoS2P7YprLNpSmFBsvxf5J2Kw
  4. Adapt to a new domain by re-training with rescaled data.

    cd pointrcnn/tools/
    
    python train_rcnn.py --cfg_file ...

Inference

cd pointrcnn/tools/
python eval_rcnn.py --ckpt /path/to/checkpoint.pth --dataset $dataset --output_dir $output_dir 

Evaluation

We provide evaluation code with

  • old (based on bbox height) and new (based on distance) difficulty metrics
  • output transformation functions to locate domain gap
python evaluate/
python evaluate.py --result_path $predictions --dataset_path $dataset_root --metric [old/new]

Citation

@inproceedings{wang2020train,
  title={Train in germany, test in the usa: Making 3d object detectors generalize},
  author={Yan Wang and Xiangyu Chen and Yurong You and Li Erran and Bharath Hariharan and Mark Campbell and Kilian Q. Weinberger and Wei-Lun Chao},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={11713-11723},
  year={2020}
}
Owner
Xiangyu Chen
Ph.D. Student in Computer Science
Xiangyu Chen
This repo holds codes of the ICCV21 paper: Visual Alignment Constraint for Continuous Sign Language Recognition.

VAC_CSLR This repo holds codes of the paper: Visual Alignment Constraint for Continuous Sign Language Recognition.(ICCV 2021) [paper] Prerequisites Th

Yuecong Min 64 Dec 19, 2022
Code for "CloudAAE: Learning 6D Object Pose Regression with On-line Data Synthesis on Point Clouds" @ICRA2021

CloudAAE This is an tensorflow implementation of "CloudAAE: Learning 6D Object Pose Regression with On-line Data Synthesis on Point Clouds" Files log:

Gee 35 Nov 14, 2022
这是一个yolo3-tf2的源码,可以用于训练自己的模型。

YOLOV3:You Only Look Once目标检测模型在Tensorflow2当中的实现 目录 性能情况 Performance 所需环境 Environment 文件下载 Download 训练步骤 How2train 预测步骤 How2predict 评估步骤 How2eval 参考资料

Bubbliiiing 68 Dec 21, 2022
MHFormer: Multi-Hypothesis Transformer for 3D Human Pose Estimation

MHFormer: Multi-Hypothesis Transformer for 3D Human Pose Estimation This repo is the official implementation of "MHFormer: Multi-Hypothesis Transforme

Vegetabird 281 Jan 07, 2023
Out-of-Domain Human Mesh Reconstruction via Dynamic Bilevel Online Adaptation

DynaBOA Code repositoty for the paper: Out-of-Domain Human Mesh Reconstruction via Dynamic Bilevel Online Adaptation Shanyan Guan, Jingwei Xu, Michell

198 Dec 29, 2022
7th place solution of Human Protein Atlas - Single Cell Classification on Kaggle

kaggle-hpa-2021-7th-place-solution Code for 7th place solution of Human Protein Atlas - Single Cell Classification on Kaggle. A description of the met

8 Jul 09, 2021
Recommendationsystem - Movie-recommendation - matrixfactorization colloborative filtering recommendation system user

recommendationsystem matrixfactorization colloborative filtering recommendation

kunal jagdish madavi 1 Jan 01, 2022
RoMa: A lightweight library to deal with 3D rotations in PyTorch.

RoMa: A lightweight library to deal with 3D rotations in PyTorch. RoMa (which stands for Rotation Manipulation) provides differentiable mappings betwe

NAVER 90 Dec 27, 2022
Search Youtube Video and Get Video info

PyYouTube Get Video Data from YouTube link Installation pip install PyYouTube How to use it ? Get Videos Data from pyyoutube import Data yt = Data("ht

lokaman chendekar 35 Nov 25, 2022
OREO: Object-Aware Regularization for Addressing Causal Confusion in Imitation Learning (NeurIPS 2021)

OREO: Object-Aware Regularization for Addressing Causal Confusion in Imitation Learning (NeurIPS 2021) Video demo We here provide a video demo from co

20 Nov 25, 2022
《LightXML: Transformer with dynamic negative sampling for High-Performance Extreme Multi-label Text Classification》(AAAI 2021) GitHub:

LightXML: Transformer with dynamic negative sampling for High-Performance Extreme Multi-label Text Classification

76 Dec 05, 2022
Code for "Human Pose Regression with Residual Log-likelihood Estimation", ICCV 2021 Oral

Human Pose Regression with Residual Log-likelihood Estimation [Paper] [arXiv] [Project Page] Human Pose Regression with Residual Log-likelihood Estima

JeffLi 347 Dec 24, 2022
PyTorch implementation of CDistNet: Perceiving Multi-Domain Character Distance for Robust Text Recognition

PyTorch implementation of CDistNet: Perceiving Multi-Domain Character Distance for Robust Text Recognition The unofficial code of CDistNet. Now, we ha

25 Jul 20, 2022
Codes for AAAI 2022 paper: Context-aware Health Event Prediction via Transition Functions on Dynamic Disease Graphs

Context-Aware-Healthcare Codes for AAAI 2022 paper: Context-aware Health Event Prediction via Transition Functions on Dynamic Disease Graphs Download

LuChang 9 Dec 26, 2022
CasualHealthcare's Pneumonia detection with Artificial Intelligence (Convolutional Neural Network)

CasualHealthcare's Pneumonia detection with Artificial Intelligence (Convolutional Neural Network) This is PneumoniaDiagnose, an artificially intellig

Azhaan 2 Jan 03, 2022
High-performance moving least squares material point method (MLS-MPM) solver.

High-Performance MLS-MPM Solver with Cutting and Coupling (CPIC) (MIT License) A Moving Least Squares Material Point Method with Displacement Disconti

Yuanming Hu 2.2k Dec 31, 2022
Official Repository for the ICCV 2021 paper "PixelSynth: Generating a 3D-Consistent Experience from a Single Image"

PixelSynth: Generating a 3D-Consistent Experience from a Single Image (ICCV 2021) Chris Rockwell, David F. Fouhey, and Justin Johnson [Project Website

Chris Rockwell 95 Nov 22, 2022
PyTorch implementation of EfficientNetV2

[NEW!] Check out our latest work involution accepted to CVPR'21 that introduces a new neural operator, other than convolution and self-attention. PyTo

Duo Li 375 Jan 03, 2023
offical implement of our Lifelong Person Re-Identification via Adaptive Knowledge Accumulation in CVPR2021

LifelongReID Offical implementation of our Lifelong Person Re-Identification via Adaptive Knowledge Accumulation in CVPR2021 by Nan Pu, Wei Chen, Yu L

PeterPu 76 Dec 08, 2022
PyTorch framework, for reproducing experiments from the paper Implicit Regularization in Hierarchical Tensor Factorization and Deep Convolutional Neural Networks

Implicit Regularization in Hierarchical Tensor Factorization and Deep Convolutional Neural Networks. Code, based on the PyTorch framework, for reprodu

Asaf 3 Dec 27, 2022