[SDM 2022] Towards Similarity-Aware Time-Series Classification

Related tags

Deep LearningSimTSC
Overview

SimTSC

This is the PyTorch implementation of SDM2022 paper Towards Similarity-Aware Time-Series Classification. We propose Similarity-Aware Time-Series Classification (SimTSC), a conceptually simple and general framework that models similarity information with graph neural networks (GNNs). We formulate time-series classification as a node classification problem in graphs, where the nodes correspond to time-series, and the links correspond to pair-wise similarities. overview

Installation

pip3 install -r requirements.txt

Datasets

We provide an example dataset Coffee in this repo. You may download the full UCR datasets here. Multivariate datasets are provided in this link.

Quick Start

We use Coffee as an example to show how to run the code. You may easily try other datasets with arguments --dataset. We will show how to get the results for DTW+1NN, ResNet, and SimTSC.

First, prepare the dataset with

python3 create_dataset.py

Then install the python wrapper of UCR DTW library with

git clone https://github.com/daochenzha/pydtw.git
cd pydtw
pip3 install -e .
cd ..

Then compute the dtw matrix for Coffee with

python3 create_dtw.py
  1. For DTW+1NN:
python3 train_knn.py
  1. For ResNet:
python3 train_resnet.py
  1. For SimTSC:
python3 train_simtsc.py

All the logs will be saved in logs/

Multivariate Datasets Quick Start

  1. Download the datasets and pre-computed DTW with this link.

  2. Unzip the file and put it into datasets/ folder

  3. Prepare the datasets with

python3 create_dataset.py --dataset CharacterTrajectories
  1. For DTW+1NN:
python3 train_knn.py --dataset CharacterTrajectories
  1. For ResNet:
python3 train_resnet.py --dataset CharacterTrajectories
  1. For SimTSC:
python3 train_simtsc.py --dataset CharacterTrajectories

Descriptions of the Files

  1. create_dataset.py is a script to pre-process dataset and save them into npy. Some important hyperparameters are as follows.
  • --dataset: what dataset to process
  • --shot: how many training labels are given in each class
  1. create_dtw.py is a script to calculate pair-wise DTW distances of a dataset and save them into npy. Some important hyperparameters are as follows.
  • --dataset: what dataset to process
  1. train_knn.py is a script to do classfication DTW+1NN of a dataset. Some important hyperparameters are as follows.
  • --dataset: what dataset we operate on
  • --shot: how many training labels are given in each class
  1. train_resnet.py is a script to do classfication of a dataset with ResNet. Some important hyperparameters are as follows.
  • --dataset: what dataset we operate on
  • --shot: how many training labels are given in each class
  • --gpu: which GPU to use
  1. train_simtsc.py is a script to do classfication of a dataset with SimTSC. Some important hyperparameters are as follows.
  • --dataset: what dataset we operate on
  • --shot: how many training labels are given in each class
  • --gpu: which GPU to use
  • --K: number of neighbors per node in the constructed graph
  • --alpha: the scaling factor of the weights of the constructed graph
Owner
Daochen Zha
PhD student in Machine Learning and Data Mining
Daochen Zha
The implementation of PEMP in paper "Prior-Enhanced Few-Shot Segmentation with Meta-Prototypes"

Prior-Enhanced network with Meta-Prototypes (PEMP) This is the PyTorch implementation of PEMP. Overview of PEMP Meta-Prototypes & Adaptive Prototypes

Jianwei ZHANG 8 Oct 14, 2021
Predict the latency time of the deep learning models

Deep Neural Network Prediction Step 1. Genernate random parameters and Run them sequentially : $ python3 collect_data.py -gp -ep -pp -pl pooling -num

QAQ 1 Nov 12, 2021
[CVPR 2021] Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers

[CVPR 2021] Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers

Fudan Zhang Vision Group 897 Jan 05, 2023
Official git for "CTAB-GAN: Effective Table Data Synthesizing"

CTAB-GAN This is the official git paper CTAB-GAN: Effective Table Data Synthesizing. The paper is published on Asian Conference on Machine Learning (A

30 Dec 26, 2022
A library for augmentation of a YOLO-formated dataset

YOLO Dataset Augmentation lib Инструкция по использованию этой библиотеки Запуск всех файлов осуществлять из консоли. GoogleCrawl_to_Dataset.py Это ск

Egor Orel 1 Dec 10, 2022
Localization Distillation for Object Detection

Localization Distillation for Object Detection This repo is based on mmDetection. This is the code for our paper: Localization Distillation

274 Dec 26, 2022
Milano is a tool for automating hyper-parameters search for your models on a backend of your choice.

Milano (This is a research project, not an official NVIDIA product.) Documentation https://nvidia.github.io/Milano Milano (Machine learning autotuner

NVIDIA Corporation 147 Dec 17, 2022
Rendering color and depth images for ShapeNet models.

Color & Depth Renderer for ShapeNet This library includes the tools for rendering multi-view color and depth images of ShapeNet models. Physically bas

Yinyu Nie 41 Dec 19, 2022
PyTorch implementation DRO: Deep Recurrent Optimizer for Structure-from-Motion

DRO: Deep Recurrent Optimizer for Structure-from-Motion This is the official PyTorch implementation code for DRO-sfm. For technical details, please re

Alibaba Cloud 56 Dec 12, 2022
Human4D Dataset tools for processing and visualization

HUMAN4D: A Human-Centric Multimodal Dataset for Motions & Immersive Media HUMAN4D constitutes a large and multimodal 4D dataset that contains a variet

tofis 15 Nov 09, 2022
Unsupervised captioning - Code for Unsupervised Image Captioning

Unsupervised Image Captioning by Yang Feng, Lin Ma, Wei Liu, and Jiebo Luo Introduction Most image captioning models are trained using paired image-se

Yang Feng 207 Dec 24, 2022
A project which aims to protect your privacy using inexpensive hardware and easily modifiable software

Protecting your privacy using an ESP32, an IR sensor and a python script This project, which I personally call the "never-gonna-catch-me-in-the-act-ev

8 Oct 10, 2022
Quick program made to generate alpha and delta tables for Hidden Markov Models

HMM_Calc Functions for generating Alpha and Delta tables from a Hidden Markov Model. Parameters: a: Matrix of transition probabilities. a[i][j] = a_{i

Adem Odza 1 Dec 04, 2021
NEO: Non Equilibrium Sampling on the orbit of a deterministic transform

NEO: Non Equilibrium Sampling on the orbit of a deterministic transform Description of the code This repo describes the NEO estimator described in the

0 Dec 01, 2021
Python3 / PyTorch implementation of the following paper: Fine-grained Semantics-aware Representation Enhancement for Self-supervisedMonocular Depth Estimation. ICCV 2021 (oral)

FSRE-Depth This is a Python3 / PyTorch implementation of FSRE-Depth, as described in the following paper: Fine-grained Semantics-aware Representation

77 Dec 28, 2022
Neighbor2Seq: Deep Learning on Massive Graphs by Transforming Neighbors to Sequences

Neighbor2Seq: Deep Learning on Massive Graphs by Transforming Neighbors to Sequences This repository is an official PyTorch implementation of Neighbor

DIVE Lab, Texas A&M University 8 Jun 12, 2022
Autolfads-tf2 - A TensorFlow 2.0 implementation of Latent Factor Analysis via Dynamical Systems (LFADS) and AutoLFADS

autolfads-tf2 A TensorFlow 2.0 implementation of LFADS and AutoLFADS. Installati

Systems Neural Engineering Lab 11 Oct 29, 2022
Boston House Prediction Valuation Tool

Boston-House-Prediction-Valuation-Tool From Below Anlaysis The Valuation Tool is Designed Correlation Matrix Regrssion Analysis Between Target Vs Pred

0 Sep 09, 2022
DeepAL: Deep Active Learning in Python

DeepAL: Deep Active Learning in Python Python implementations of the following active learning algorithms: Random Sampling Least Confidence [1] Margin

Kuan-Hao Huang 583 Jan 03, 2023
Differentiable molecular simulation of proteins with a coarse-grained potential

Differentiable molecular simulation of proteins with a coarse-grained potential This repository contains the learned potential, simulation scripts and

UCL Bioinformatics Group 44 Dec 10, 2022