Traditional Chinese Text Recognition Dataset: Synthetic Dataset and Labeled Data

Overview

Traditional Chinese Text Recognition Dataset: Synthetic Dataset and Labeled Data

Authors: Yi-Chang Chen, Yu-Chuan Chang, Yen-Cheng Chang and Yi-Ren Yeh

Paper: https://arxiv.org/abs/2111.13327

Scene text recognition (STR) has been widely studied in academia and industry. Training a text recognition model often requires a large amount of labeled data, but data labeling can be difficult, expensive, or time-consuming, especially for Traditional Chinese text recognition. To the best of our knowledge, public datasets for Traditional Chinese text recognition are lacking.

We generated over 20 million synthetic data and collected over 7,000 manually labeled data TC-STR 7k-word as the benchmark. Experimental results show that a text recognition model can achieve much better accuracy either by training from scratch with our generated synthetic data or by further fine-tuning with TC-STR 7k-word.

Synthetic Dataset: TCSynth

Inspired by MJSynth, SynthText and Belval/TextRecognitionDataGenerator, we propose a framework for generating scene text images for Traditional Chinese. To produce synthetic text images similar to real-world ones, we use different kinds of mechanisms for rendering, including word sampling, character spacing, font types/sizes, text coloring, text stroking, text skewing/distorting, background rendering, text Location and noise.

synth_text_pipeline

TCSynth dataset includes 21,535,590 synthetic text images.

TCSynth-VAL dataset includes 6,000 synthetic text images for validation.

LMDB Format

After untaring,

TCSynth/
├── data.mdb
└── lock.mdb

Our data structure of LMDB follows the repo. clovaai/deep-text-recognition-benchmark. The value queried by key 'num-samples'.encode() gets total number of text images. The indexes of text images starts from 1. Given the index, we can query binary of the image and its label by key 'image-%09d'.encode() % index and 'label-%09d'.encode() % index. The implement details are shown in the class LmdbConnector in lmdb_tools/lmdb_connector.py.

We also provide several tools to manipulate the LMDB shown in lmdb_tools. Before using those tools, we should install some dependencies. (tested with python 3.6)

pip install -r lmdb_tools/requirements.txt
  • Insert images into LMDB
python lmdb_tools/prepare_lmdb.py \
  --input_dir IMG_FOLDER \
  --gt_file GT \
  --output_dir LMDB_FOLDER
  • Insert images into LMDB (asynchronous version)
python lmdb_tools/prepare_lmdb_async.py \
  --input_dir IMG_FOLDER \
  --gt_file GT \
  --output_dir LMDB_FOLDER \
  --workers WORKERS
  • Extract images from LMDB (asynchronous version) (convert LMDB Format to Raw Format)
python lmdb_tools/extract_to_files.py \
  --input_lmdb LMDB_FOLDER \
  --output_dir IMG_FOLDER \
  --workers WORKERS

Raw Format

After untaring,

TCSynth_raw/
├── labels.txt
├── 0000/
│   ├── 00000001.jpg
│   ├── 00000002.jpg
│   ├── 00000003.jpg
│   └── ...
├── 0001/
├── 0002/
└── ...

format of labels.txt: {imagepath}\t{label}\n, for example:

0000/00000001.jpg 㒓
...

Labeled Data: TC-STR 7k-word

Our TC-STR 7k-word dataset collects about 1,554 images from Google image search to produce 7,543 cropped text images. To increase the diversity in our collected scene text images, we search for images under different scenarios and query keywords. Since the collected scene text images are to be used in evaluating text recognition performance, we manually crop text from the collected images and assign a label to each cropped text box.

TC-STR_demo

TC-STR 7k-word dataset includes a training set of 3,837 text images and a testing set of 3,706 images.

After untaring,

TC-STR/
├── train_labels.txt
├── test_labels.txt
└── images/
    ├── xxx_1.jpg
    ├── xxx_2.jpg
    ├── xxx_3.jpg
    └── ...

format of xxx_labels.txt: {imagepath}\t{label}\n, for example:

images/billboard_00000_010_雜貨鋪.jpg 雜貨鋪
images/sign_02616_999_民生路.png 民生路
...

Citation

Please consider citing this work in your publications if it helps your research.

@article{chen2021traditional,
  title={Traditional Chinese Synthetic Datasets Verified with Labeled Data for Scene Text Recognition},
  author={Yi-Chang Chen and Yu-Chuan Chang and Yen-Cheng Chang and Yi-Ren Yeh},
  journal={arXiv preprint arXiv:2111.13327},
  year={2021}
}
Owner
Yi-Chang Chen
大家好!我是YC,是一名資料科學家,熟悉機器學習和深度學習的各類技術,以及大數據分散式系統; 同時,我也是一名街頭藝人和部落客。我總是嘗試各種生命的可能性,因為我深信:人生的意義在於體驗一切身為人的經驗。
Yi-Chang Chen
Beautiful visualizations of how language differs among document types.

Scattertext 0.1.0.0 A tool for finding distinguishing terms in corpora and displaying them in an interactive HTML scatter plot. Points corresponding t

Jason S. Kessler 2k Dec 27, 2022
Chinese real time voice cloning (VC) and Chinese text to speech (TTS).

Chinese real time voice cloning (VC) and Chinese text to speech (TTS). 好用的中文语音克隆兼中文语音合成系统,包含语音编码器、语音合成器、声码器和可视化模块。

Kuang Dada 6 Nov 08, 2022
NLP and Text Generation Experiments in TensorFlow 2.x / 1.x

Code has been run on Google Colab, thanks Google for providing computational resources Contents Natural Language Processing(自然语言处理) Text Classificati

1.5k Nov 14, 2022
Application to help find best train itinerary, uses speech to text, has a spam filter to segregate invalid inputs, NLP and Pathfinding algos.

T-IAI-901-MSC2022 - GROUP 18 Gestion de projet Notre travail a été organisé et réparti dans un Trello. https://trello.com/b/X3s2fpPJ/ia-projet Install

1 Feb 05, 2022
translate using your voice

speech-to-text-translator Usage translate using your voice description this project makes translating a word easy, all you have to do is speak and...

1 Oct 18, 2021
Rank-One Model Editing for Locating and Editing Factual Knowledge in GPT

Rank-One Model Editing (ROME) This repository provides an implementation of Rank-One Model Editing (ROME) on auto-regressive transformers (GPU-only).

Kevin Meng 130 Dec 21, 2022
[ICLR 2021 Spotlight] Pytorch implementation for "Long-tailed Recognition by Routing Diverse Distribution-Aware Experts."

RIDE: Long-tailed Recognition by Routing Diverse Distribution-Aware Experts. by Xudong Wang, Long Lian, Zhongqi Miao, Ziwei Liu and Stella X. Yu at UC

Xudong (Frank) Wang 205 Dec 16, 2022
Topic Modelling for Humans

gensim – Topic Modelling in Python Gensim is a Python library for topic modelling, document indexing and similarity retrieval with large corpora. Targ

RARE Technologies 13.8k Jan 02, 2023
Code for CVPR 2021 paper: Revamping Cross-Modal Recipe Retrieval with Hierarchical Transformers and Self-supervised Learning

Revamping Cross-Modal Recipe Retrieval with Hierarchical Transformers and Self-supervised Learning This is the PyTorch companion code for the paper: A

Amazon 69 Jan 03, 2023
A complete NLP guideline for enthusiasts

NLP-NINJA A complete guide for Natural Language Processing in Python Table of Contents S.No. Topic Level Meaning 1 Tokenization 🤍 Beginner 2 Stemming

MAINAK CHAUDHURI 22 Dec 27, 2022
Source code of paper "BP-Transformer: Modelling Long-Range Context via Binary Partitioning"

BP-Transformer This repo contains the code for our paper BP-Transformer: Modeling Long-Range Context via Binary Partition Zihao Ye, Qipeng Guo, Quan G

Zihao Ye 119 Nov 14, 2022
Plugin repository for Macast

Macast-plugins Plugin repository for Macast. How to use third-party player plugin Download Macast from GitHub Release. Download the plugin you want fr

109 Jan 04, 2023
XLNet: Generalized Autoregressive Pretraining for Language Understanding

Introduction XLNet is a new unsupervised language representation learning method based on a novel generalized permutation language modeling objective.

Zihang Dai 6k Jan 07, 2023
NLP Text Classification

多标签文本分类任务 近年来随着深度学习的发展,模型参数的数量飞速增长。为了训练这些参数,需要更大的数据集来避免过拟合。然而,对于大部分NLP任务来说,构建大规模的标注数据集非常困难(成本过高),特别是对于句法和语义相关的任务。相比之下,大规模的未标注语料库的构建则相对容易。为了利用这些数据,我们可以

Jason 1 Nov 11, 2021
The implementation of Parameter Differentiation based Multilingual Neural Machine Translation

The implementation of Parameter Differentiation based Multilingual Neural Machine Translation .

Qian Wang 21 Dec 17, 2022
Synthetic data for the people.

zpy: Synthetic data in Blender. Website • Install • Docs • Examples • CLI • Contribute • Licence Abstract Collecting, labeling, and cleaning data for

Zumo Labs 253 Dec 21, 2022
iSTFTNet : Fast and Lightweight Mel-spectrogram Vocoder Incorporating Inverse Short-time Fourier Transform

iSTFTNet : Fast and Lightweight Mel-spectrogram Vocoder Incorporating Inverse Short-time Fourier Transform This repo try to implement iSTFTNet : Fast

Rishikesh (ऋषिकेश) 126 Jan 02, 2023
AI-Broad-casting - AI Broad casting with python

Basic Code 1. Use The Code Configuration Environment conda create -n code_base p