Hamiltonian Dynamics with Non-Newtonian Momentum for Rapid Sampling

Overview

Hamiltonian Dynamics with Non-Newtonian Momentum for Rapid Sampling

Code for the paper:

Greg Ver Steeg and Aram Galstyan. "Hamiltonian Dynamics with Non-Newtonian Momentum for Rapid Sampling", NeurIPS 2021. [arxiv] [bibtex]

Non-Newtonian Momentum Animation:

This repo contains code for implementing Energy Sampling Hamiltonian Dynamics, so-called because the Hamiltonian dynamics with this special form of Non-Newtonian momentum ergodically samples from a target un-normalized density specified by an energy function.

Requirements

The core ESH dynamics sampler code (import esh) uses only PyTorch.

python -m pip install git+https://github.com/gregversteeg/esh_dynamics

Use pip install -r requirements.txt to install requirements for all comparison code.

Usage

Here's a small example where we load a pytorch energy function, then sample Langevin versus ESH trajectories.

import torch as t
import esh  # ESH Dynamics integrator
from esh.datasets import ToyDataset  # Example energy models
from esh.samplers import hmc_integrate  # Sampling comparison methods, like Langevin

# Energy to sample - any pytorch function/module that outputs a scalar per batch item
energy = ToyDataset(toy_type='gmm').energy  # Gaussian mixture model

epsilon = 0.01  # Step size should be < 1
n_steps = 100  # Number of steps to take
x0 = t.tensor([[0., 0.5]])  # Initial state, size (batch_size, ...)
xs, vs, rs = esh.leap_integrate_chain(energy, x0, n_steps, epsilon, store=True)  # "Store" returns whole trajectory
xs_ula, vs_ula, _ = hmc_integrate(energy, x0, n_steps, epsilon=epsilon, k=1, mh_reject=False)  # Unadjusted Langevin Alg

To get just the last state instead of the whole trajectory, set store=False. To do ergodic reservoir sampling, set reservoir=True, store=False.

Generating figures

See the README in the generate_figures for scripts to generate each figure in the paper, and to see more example usage.

BibTeX

@inproceedings{esh,
  title={Hamiltonian Dynamics with Non-Newtonian Momentum for Rapid Sampling},
  author={Greg {Ver Steeg} and Aram Galstyan},
  Booktitle={Advances in Neural Information Processing Systems},
  year={2021}
}
Owner
Greg Ver Steeg
Research professor at USC
Greg Ver Steeg
CFC-Net: A Critical Feature Capturing Network for Arbitrary-Oriented Object Detection in Remote Sensing Images

CFC-Net This project hosts the official implementation for the paper: CFC-Net: A Critical Feature Capturing Network for Arbitrary-Oriented Object Dete

ming71 55 Dec 12, 2022
Simple tutorials using Google's TensorFlow Framework

TensorFlow-Tutorials Introduction to deep learning based on Google's TensorFlow framework. These tutorials are direct ports of Newmu's Theano Tutorial

Nathan Lintz 6k Jan 06, 2023
NATS-Bench: Benchmarking NAS Algorithms for Architecture Topology and Size

NATS-Bench: Benchmarking NAS Algorithms for Architecture Topology and Size Xuanyi Dong, Lu Liu, Katarzyna Musial, Bogdan Gabrys in IEEE Transactions o

D-X-Y 137 Dec 20, 2022
Code to generate datasets used in "How Useful is Self-Supervised Pretraining for Visual Tasks?"

Synthetic dataset rendering Framework for producing the synthetic datasets used in: How Useful is Self-Supervised Pretraining for Visual Tasks? Alejan

Princeton Vision & Learning Lab 21 Apr 29, 2022
One-Shot Neural Ensemble Architecture Search by Diversity-Guided Search Space Shrinking

One-Shot Neural Ensemble Architecture Search by Diversity-Guided Search Space Shrinking This is an official implementation for NEAS presented in CVPR

Multimedia Research 19 Sep 08, 2022
Awesome Graph Classification - A collection of important graph embedding, classification and representation learning papers with implementations.

A collection of graph classification methods, covering embedding, deep learning, graph kernel and factorization papers

Benedek Rozemberczki 4.5k Jan 01, 2023
Weakly-Supervised Semantic Segmentation Network with Deep Seeded Region Growing (CVPR 2018).

Weakly-Supervised Semantic Segmentation Network with Deep Seeded Region Growing (CVPR2018) By Zilong Huang, Xinggang Wang, Jiasi Wang, Wenyu Liu and J

Zilong Huang 245 Dec 13, 2022
Robust & Reliable Route Recommendation on Road Networks

NeuroMLR: Robust & Reliable Route Recommendation on Road Networks This repository is the official implementation of NeuroMLR: Robust & Reliable Route

4 Dec 20, 2022
[arXiv'22] Panoptic NeRF: 3D-to-2D Label Transfer for Panoptic Urban Scene Segmentation

Panoptic NeRF Project Page | Paper | Dataset Panoptic NeRF: 3D-to-2D Label Transfer for Panoptic Urban Scene Segmentation Xiao Fu*, Shangzhan zhang*,

Xiao Fu 111 Dec 16, 2022
[CIKM 2021] Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive Learning

Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive Learning. This repo contains the PyTorch code and implementation for the paper E

Akuchi 18 Dec 22, 2022
Deep learned, hardware-accelerated 3D object pose estimation

Isaac ROS Pose Estimation Overview This repository provides NVIDIA GPU-accelerated packages for 3D object pose estimation. Using a deep learned pose e

NVIDIA Isaac ROS 41 Dec 18, 2022
SSPNet: Scale Selection Pyramid Network for Tiny Person Detection from UAV Images.

SSPNet: Scale Selection Pyramid Network for Tiny Person Detection from UAV Images (IEEE GRSL 2021) Code (based on mmdetection) for SSPNet: Scale Selec

Italian Cannon 37 Dec 28, 2022
custom pytorch implementation of MoCo v3

MoCov3-pytorch custom implementation of MoCov3 [arxiv]. I made minor modifications based on the official MoCo repository [github]. No ViT part code an

39 Nov 14, 2022
An end-to-end machine learning web app to predict rugby scores (Pandas, SQLite, Keras, Flask, Docker)

Rugby score prediction An end-to-end machine learning web app to predict rugby scores Overview An demo project to provide a high-level overview of the

34 May 24, 2022
Bayesian dessert for Lasagne

Gelato Bayesian dessert for Lasagne Recent results in Bayesian statistics for constructing robust neural networks have proved that it is one of the be

Maxim Kochurov 84 May 11, 2020
95.47% on CIFAR10 with PyTorch

Train CIFAR10 with PyTorch I'm playing with PyTorch on the CIFAR10 dataset. Prerequisites Python 3.6+ PyTorch 1.0+ Training # Start training with: py

5k Dec 30, 2022
PyTorch implementation of a collections of scalable Video Transformer Benchmarks.

PyTorch implementation of Video Transformer Benchmarks This repository is mainly built upon Pytorch and Pytorch-Lightning. We wish to maintain a colle

Xin Ma 156 Jan 08, 2023
Benchmark VAE - Library for Variational Autoencoder benchmarking

Documentation pythae This library implements some of the most common (Variational) Autoencoder models. In particular it provides the possibility to pe

1.1k Jan 02, 2023