Pytorch implementations of the paper Value Functions Factorization with Latent State Information Sharing in Decentralized Multi-Agent Policy Gradients

Related tags

Deep LearningLSF-SAC
Overview

LSF-SAC

Pytorch implementations of the paper Value Functions Factorization with Latent State Information Sharing in Decentralized Multi-Agent Policy Gradients and several other multi-agent reinforcement learning algorithms, including IQL, QMIX, VDN, COMA, QTRAN(both QTRAN-base and QTRAN-alt), MAVEN, CommNet, DyMA-CL, and G2ANet, which are the state of the art MARL algorithms. The paper implementation and other algorithms' implementation is based on starry-sky6688's qmix impplementation.

Requirements

Acknowledgement

Quick Start

$ python main.py --map=3m

Directly run the main.py, then the algorithm will start training on map 3m. Note CommNet and G2ANet need an external training algorithm, so the name of them are like reinforce+commnet or central_v+g2anet, all the algorithms we provide are written in ./common/arguments.py.

If you just want to use this project for demonstration, you should set --evaluate=True --load_model=True.

The running of DyMA-CL is independent from others because it requires different environment settings, so we put it on another project. For more details, please read DyMA-CL documentation.

Result

We independently train these algorithms for 8 times and take the mean of the 8 independent results, and we evaluate them for 20 episodes every 100 training steps. All of the results are saved in ./result. Results on other maps are still in training, we will update them later.

1. Mean Win Rate of 8 Independent Runs with --difficulty=7(VeryHard)

Replay

Check the website for several replay examples here

If you want to see the replay from your own run, make sure the replay_dir is an absolute path, which can be set in ./common/arguments.py. Then the replays of each evaluation will be saved, you can find them in your path.

Citation

If you find this helpful to your research, please consider citing this paper as

@article{zhou2022value,
  title={Value Functions Factorization with Latent State Information Sharing in Decentralized Multi-Agent Policy Gradients},
  author={Zhou, Hanhan and Lan, Tian and Aggarwal, Vaneet},
  journal={arXiv preprint arXiv:2201.01247},
  year={2022}
}
Owner
Hanhan
[2019.Fall- ] Ph.D Candidate, GWU ECE
Hanhan
An official implementation of "Background-Aware Pooling and Noise-Aware Loss for Weakly-Supervised Semantic Segmentation" (CVPR 2021) in PyTorch.

BANA This is the implementation of the paper "Background-Aware Pooling and Noise-Aware Loss for Weakly-Supervised Semantic Segmentation". For more inf

CV Lab @ Yonsei University 59 Dec 12, 2022
Live training loss plot in Jupyter Notebook for Keras, PyTorch and others

livelossplot Don't train deep learning models blindfolded! Be impatient and look at each epoch of your training! (RECENT CHANGES, EXAMPLES IN COLAB, A

Piotr Migdał 1.2k Jan 08, 2023
SWA Object Detection

SWA Object Detection This project hosts the scripts for training SWA object detectors, as presented in our paper: @article{zhang2020swa, title={SWA

237 Nov 28, 2022
Airborne magnetic data of the Osborne Mine and Lightning Creek sill complex, Australia

Osborne Mine, Australia - Airborne total-field magnetic anomaly This is a section of a survey acquired in 1990 by the Queensland Government, Australia

Fatiando a Terra Datasets 1 Jan 21, 2022
Implementation of Analyzing and Improving the Image Quality of StyleGAN (StyleGAN 2) in PyTorch

Implementation of Analyzing and Improving the Image Quality of StyleGAN (StyleGAN 2) in PyTorch

Kim Seonghyeon 2.2k Jan 01, 2023
A tight inclusion function for continuous collision detection

Tight-Inclusion Continuous Collision Detection A conservative Continuous Collision Detection (CCD) method with support for minimum separation. You can

Continuous Collision Detection 89 Jan 01, 2023
A list of Machine Learning Art Colabs

ML Visual Art Colabs A list of cool Colabs on Machine Learning Imagemaking or other artistic purposes 3D Ken Burns Effect Ken Burns Effect by Manuel R

Derrick Schultz (he/him) 789 Dec 12, 2022
General Assembly Capstone: NBA Game Predictor

Project 6: Predicting NBA Games Problem Statement Can I predict the results of NBA games from the back-half of a season from the opening half of the s

Adam Muhammad Klesc 1 Jan 14, 2022
Curvlearn, a Tensorflow based non-Euclidean deep learning framework.

English | 简体中文 Why Non-Euclidean Geometry Considering these simple graph structures shown below. Nodes with same color has 2-hop distance whereas 1-ho

Alibaba 123 Dec 12, 2022
PyTorch implementation of DARDet: A Dense Anchor-free Rotated Object Detector in Aerial Images

DARDet PyTorch implementation of "DARDet: A Dense Anchor-free Rotated Object Detector in Aerial Images", [pdf]. Highlights: 1. We develop a new dense

41 Oct 23, 2022
[ICME 2021 Oral] CORE-Text: Improving Scene Text Detection with Contrastive Relational Reasoning

CORE-Text: Improving Scene Text Detection with Contrastive Relational Reasoning This repository is the official PyTorch implementation of CORE-Text, a

Jingyang Lin 18 Aug 11, 2022
[NeurIPS 2021] Galerkin Transformer: a linear attention without softmax

[NeurIPS 2021] Galerkin Transformer: linear attention without softmax Summary A non-numerical analyst oriented explanation on Toward Data Science abou

Shuhao Cao 159 Dec 20, 2022
JudeasRx - graphical app for doing personalized causal medicine using the methods invented by Judea Pearl et al.

JudeasRX Instructions Read the references given in the Theory and Notation section below Fire up the Jupyter Notebook judeas-rx.ipynb The notebook dra

Robert R. Tucci 19 Nov 07, 2022
A sample pytorch Implementation of ACL 2021 research paper "Learning Span-Level Interactions for Aspect Sentiment Triplet Extraction".

Span-ASTE-Pytorch This repository is a pytorch version that implements Ali's ACL 2021 research paper Learning Span-Level Interactions for Aspect Senti

来自丹麦的天籁 10 Dec 06, 2022
Based on the given clinical dataset, Predict whether the patient having Heart Disease or Not having Heart Disease

Heart_Disease_Classification Based on the given clinical dataset, Predict whether the patient having Heart Disease or Not having Heart Disease Dataset

Ashish 1 Jan 30, 2022
Adversarial Learning for Modeling Human Motion

Adversarial Learning for Modeling Human Motion This repository contains the open source code which reproduces the results for the paper: Adversarial l

wangqi 6 Jun 15, 2021
Catalyst.Detection

Accelerated DL R&D PyTorch framework for Deep Learning research and development. It was developed with a focus on reproducibility, fast experimentatio

Catalyst-Team 12 Oct 25, 2021
Autonomous Robots Kalman Filters

Autonomous Robots Kalman Filters The Kalman Filter is an easy topic. However, ma

20 Jul 18, 2022
Machine Learning Time-Series Platform

cesium: Open-Source Platform for Time Series Inference Summary cesium is an open source library that allows users to: extract features from raw time s

632 Dec 26, 2022
KAPAO is an efficient multi-person human pose estimation model that detects keypoints and poses as objects and fuses the detections to predict human poses.

KAPAO (Keypoints and Poses as Objects) KAPAO is an efficient single-stage multi-person human pose estimation model that models keypoints and poses as

Will McNally 664 Dec 30, 2022