【CVPR 2021, Variational Inference Framework, PyTorch】 From Rain Generation to Rain Removal

Related tags

Deep LearningVRGNet
Overview

From Rain Generation to Rain Removal (CVPR2021)

Hong Wang, Zongsheng Yue, Qi Xie, Qian Zhao, Yefeng Zheng, and Deyu Meng

[PDF&&Supplementary Material]

Abstract

For the single image rain removal (SIRR) task, the performance of deep learning (DL)-based methods is mainly affected by the designed deraining models and training datasets. Most of current state-of-the-art focus on constructing powerful deep models to obtain better deraining results. In this paper, to further improve the deraining performance, we novelly attempt to handle the SIRR task from the perspective of training datasets by exploring a more efficient way to synthesize rainy images. Specifically, we build a full Bayesian generative model for rainy image where the rain layer is parameterized as a generator with the input as some latent variables representing the physical structural rain factors, e.g., direction, scale, and thickness. To solve this model, we employ the variational inference framework to approximate the expected statistical distribution of rainy image in a data-driven manner. With the learned generator, we can automatically and sufficiently generate diverse and non-repetitive training pairs so as to efficiently enrich and augment the existing benchmark datasets. User study qualitatively and quantitatively evaluates the realism of generated rainy images. Comprehensive experiments substantiate that the proposed model can faithfully extract the complex rain distribution that not only helps significantly improve the deraining performance of current deep single image derainers, but also largely loosens the requirement of large training sample pre-collection for the SIRR task.

Dependicies

pip install -r requirements.txt

Folder Directory

.
|-- for_spa                                   : Experiments on real SPA-Data
|   |-- data                                  : SPA-Data: train + test
|   |   `-- spa-data 
|   |       |-- real_world              
|   |       |-- real_world.txt
|   |       |-- real_world_gt
|   |       `-- test  
|   |-- train_spa_joint.py                    : Joint training on SPA-Data
|   |-- train_spa_aug.py                      : Augmentated training
|   |-- train_spa_smallsample_aug.py          : Small sample experiments (GNet in Table 1)
|   |-- train_spa_smallsample_noaug.py        : Small sample experiments (Baseline in Table 1)
|   |-- test_disentanglement.py               : Distentanglement experiments on SPA-Data
|   |-- test_interpolation.py                 : Interpolation experiments on SPA-Data
|   |-- spamodels                             : Joint pretrained model on SPA-Data

|-- for_syn                                   : Experiments on synthesized datasets
|   |-- data                                  : Synthesized datasets: train + test
|   |   |-- rain100H
|   |   |   |-- test
|   |   |   `-- train
|   |   |-- rain100L
|   |   |   |-- test
|   |   |   `-- train
|   |   `-- rain1400
|   |       |-- test
|   |       `-- train
|   |-- train_syn_joint.py                    : Joint training
|   |-- train_syn_aug.py                      : Augmentated training in Table 2
|   |-- test_disentanglement.py               : Distentanglement experiments
|   |-- test_interpolation.py                 : Interpolation experiments 
|   |-- syn100hmodels                         : Joint pretrained model on rain100H
|   |-- syn100lmodels                         : Joint pretrained model on rain100L
|   |-- syn1400models                         : Joint pretrained model on rain1400

Benchmark Dataset

Synthetic datasets: Rain100L, Rain100H, Rain1400

Real datasets: SPA-Data, Internet-Data(only for testing)

Detailed descriptions refer to the Survey, SCIENCE CHINA Information Sciences2021

Please refer to RCDNet, CVPR2021 for downloading these datasets and put them into the corresponding folders according to the dictionary above.

For Synthetic Dataset (taking Rain100L as an example)

Training

Step 1. Joint Training:

$ cd ./VRGNet/for_syn/ 
$ python train_syn_joint.py  --data_path "./data/rain100L/train/small/rain" --gt_path "./data/rain100L/train/small/norain" --log_dir "./syn100llogs/" --model_dir "./syn100lmodels/" --gpu_id 0  

Step 2. Augmentated Training: (taking baseline PReNet as an example)

$ python train_syn_aug.py  --data_path "./data/rain100L/train/small/rain" --gt_path "./data/rain100L/train/small/norain" --netED "./syn100lmodels/ED_state_700.pt" --log_dir "./aug_syn100llogs/" --model_dir "./aug_syn100lmodels/" --fake_ratio 0.5 --niter 200 --gpu_id 0  

Testing

  1. Joint Testing:
$ python test_syn_joint.py  --data_path "./data/rain100L/test/small/rain" --netDerain "./syn100lmodels/DerainNet_state_700.pt" --save_path "./derained_results/rain100L/" --gpu_id 0  
  1. Augmentated Testing: (taking baseline PReNet as an example)
$ python test_syn_aug.py  --data_path "./data/rain100L/test/small/rain" --model_dir "./aug_syn100lmodels/Aug_DerainNet_state_200.pt" --save_path "./aug_derained_results/rain100L/" --gpu_id 0  
  1. Interpolation Testing:
$ python test_interpolation.py   --data_path "./interpolation_results/test_data/rain100L/rain" --gt_path "./interpolation_results/test_data/rain100L/norain" --netED "./syn100lmodels/ED_state_700.pt"  --save_patch "./interpolation_results/test_data/rain100L/crop_patch/" --save_inputfake "./interpolation_results/generated_data/rain100L/input_fake" --save_rainfake "./interpolation_results/generated_data/rain100L/rain_fake" --gpu_id 0  
  1. Disentanglement Testing:
$ python test_disentanglement.py  --netED "./syn100lmodels/ED_state_700.pt" --save_fake "./disentanglement_results/rain100L/" --gpu_id 0  

For SPA-Data

Training

Step 1. Joint Training:

$ cd ./VRGNet/for_spa/ 
$ python train_spa_joint.py  --data_path "./data/spa-data/" --log_dir "./spalogs/" --model_dir "./spamodels/" --gpu_id 0  

Step 2. Augmentated Training: (taking baseline PReNet as an example)

$ python train_spa_aug.py  --data_path "./data/spa-data/" --netED "./spamodels/ED_state_800.pt" --log_dir "./aug_spalogs/" --model_dir "./aug_spamodels/" --fake_ratio 0.5 --niter 200 --gpu_id 0  

Step 3. Small Sample Training: (taking baseline PReNet as an example)

$ python train_spa_smallsample_aug.py  --data_path "./data/spa-data/" --netED "./spamodels/ED_state_800.pt" --fake_ratio 0.5 --train_num 1000 --log_dir "./aug05_spalogs/" --model_dir "./aug05_spamodels/" --niter 200 --gpu_id 0  
$ python train_spa_smallsample_noaug.py  --data_path "./data/spa-data/" --fake_ratio 0.5 --train_num 1000 --log_dir "./noaug05_spalogs/" --model_dir "./noaug05_spamodels/" --niter 200 --gpu_id 0  

Testing

  1. Joint Testing:
$ python test_spa_joint.py  --data_path "./data/spa-data/test/small/rain" --netDerain "./spamodels/DerainNet_state_800.pt" --save_path "./derained_results/spa-data/" --gpu_id 0  
  1. Augmentated Testing: (taking baseline PReNet as an example)
$ python test_spa_aug.py  --data_path "./data/spa-data/test/small/rain" --model_dir "./aug_spamodels/Aug_DerainNet_state_200.pt" --save_path "./aug_derained_results/spa-data/" --gpu_id 0  
  1. Interpolation Testing:
$ python test_interpolation.py   --data_path "./interpolation_results/test_data/spa-data/rain" --gt_path "./interpolation_results/test_data/spa-data/norain" --netED "./spamodels/ED_state_800.pt"  --save_patch "./interpolation_results/test_data/spa-data/crop_patch/" --save_inputfake "./interpolation_results/generated_data/spa-data/input_fake" --save_rainfake "./interpolation_results/generated_data/spa-data/rain_fake" --gpu_id 0  
  1. Disentanglement Testing:
$ python test_disentanglement.py  --netED "./spamodels/ED_state_800.pt" --save_fake "./disentanglement_results/spa-data/" --gpu_id 0  
  1. Small Sample Testing: (taking baseline PReNet as an example)
$ python test_spa_aug.py  --data_path "./data/spa-data/test/small/rain" --model_dir "./aug05_spamodels/Aug05_DerainNet_state_200.pt" --save_path "./aug05_derained_results/spa-data/" --gpu_id 0  
$ python test_spa_aug.py  --data_path "./data/spa-data/test/small/rain" --model_dir "./noaug05_spamodels/NoAug05_DerainNet_state_200.pt" --save_path "./noaug05_derained_results/spa-data/" --gpu_id 0  

For Internet-Data

The test model is trained on SPA-Data.

Pretrained Model and Usage

  1. We have provided the joint pretrained model saved in syn100lmodels, syn100hmodels, syn1400models, and spamodels. If needed, you can dirctly utilize them to augment the original training set without exectuting the joint training.

  2. We only provide the PReNet for an example during the augmented training/testing phase. This is a demo. In practice, you can easily replace PReNet with other deep deraining models as well as yours for further performance improvement by adopting the augmented strategy with our generator. Please note that the training details in train_syn_aug.pyand train_spa_aug.pyare needed to be correspondingly adjusted.

  3. Please note that in our default settings, the generated patchsize is 64x64. In the released code, we also provide the model revision (i.e., RNet, Generator, and discriminator) for generating the size as 256x256. If other sizes are needed, you can correspondingly revise the network layer and then re-train the joint VRGNet.

Rain Generation Experiments

    

          

Rain Removal Experiments

Derained Results of Our VRGNet (i.e., PReNet-)

All PSNR and SSIM results are computed with this Matlab code. If needed, please download the results from NetDisk (pwd:2q6l)

Citation

@InProceedings{Wang_2021_CVPR,  
author = {Wang, Hong and Yue, Zongsheng and Xie, Qi and Zhao, Qian and Zheng, Yefeng and Meng, Deyu},  
title = {From Rain Generation to Rain Removal},  
booktitle = {IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},  
month = {June},  
year = {2021}  
}

Contact

If you have any question, please feel free to concat Hong Wang (Email: [email protected])

Owner
Hong Wang
Natural Image Enhancement and Restoration, Medical Image Reconstruction, Image Processing, Joint Model-Driven and Data-Driven
Hong Wang
i3DMM: Deep Implicit 3D Morphable Model of Human Heads

i3DMM: Deep Implicit 3D Morphable Model of Human Heads CVPR 2021 (Oral) Arxiv | Poject Page This project is the official implementation our work, i3DM

Tarun Yenamandra 60 Jan 03, 2023
The comma.ai Calibration Challenge!

Welcome to the comma.ai Calibration Challenge! Your goal is to predict the direction of travel (in camera frame) from provided dashcam video. This rep

comma.ai 697 Jan 05, 2023
Code of our paper "Contrastive Object-level Pre-training with Spatial Noise Curriculum Learning"

CCOP Code of our paper Contrastive Object-level Pre-training with Spatial Noise Curriculum Learning Requirement Install OpenSelfSup Install Detectron2

Chenhongyi Yang 21 Dec 13, 2022
Deeper insights into graph convolutional networks for semi-supervised learning

deeper_insights_into_GCNs Deeper insights into graph convolutional networks for semi-supervised learning References data and utils.py come from Implem

Davidham3 17 Dec 16, 2022
GenGNN: A Generic FPGA Framework for Graph Neural Network Acceleration

GenGNN: A Generic FPGA Framework for Graph Neural Network Acceleration Stefan Abi-Karam*, Yuqi He*, Rishov Sarkar*, Lakshmi Sathidevi, Zihang Qiao, Co

Sharc-Lab 19 Dec 15, 2022
Train DeepLab for Semantic Image Segmentation

Train DeepLab for Semantic Image Segmentation Martin Kersner, [email protected]

Martin Kersner 172 Dec 14, 2022
Clustering with variational Bayes and population Monte Carlo

pypmc pypmc is a python package focusing on adaptive importance sampling. It can be used for integration and sampling from a user-defined target densi

45 Feb 06, 2022
A deep neural networks for images using CNN algorithm.

Example-CNN-Project This is a simple project showing how to implement deep neural networks using CNN algorithm. The dataset is taken from this link: h

Mohammad Amin Dadgar 3 Sep 16, 2022
SymmetryNet: Learning to Predict Reflectional and Rotational Symmetries of 3D Shapes from Single-View RGB-D Images

SymmetryNet SymmetryNet: Learning to Predict Reflectional and Rotational Symmetries of 3D Shapes from Single-View RGB-D Images ACM Transactions on Gra

26 Dec 05, 2022
CC-GENERATOR - A python script for generating CC

CC-GENERATOR A python script for generating CC NOTE: This tool is for Educationa

Lêkzï 6 Oct 14, 2022
Pytorch implementation of Value Iteration Networks (NIPS 2016 best paper)

VIN: Value Iteration Networks A quick thank you A few others have released amazing related work which helped inspire and improve my own implementation

Kent Sommer 297 Dec 26, 2022
Generic template to bootstrap your PyTorch project with PyTorch Lightning, Hydra, W&B, and DVC.

NN Template Generic template to bootstrap your PyTorch project. Click on Use this Template and avoid writing boilerplate code for: PyTorch Lightning,

Luca Moschella 520 Dec 30, 2022
Numerical Methods with Python, Numpy and Matplotlib

Numerical Bric-a-Brac Collections of numerical techniques with Python and standard computational packages (Numpy, SciPy, Numba, Matplotlib ...). Diffe

Vincent Bonnet 10 Dec 20, 2021
Official repository for Automated Learning Rate Scheduler for Large-Batch Training (8th ICML Workshop on AutoML)

Automated Learning Rate Scheduler for Large-Batch Training The official repository for Automated Learning Rate Scheduler for Large-Batch Training (8th

Kakao Brain 35 Jan 04, 2023
Pytorch implementation of our paper under review -- 1xN Pattern for Pruning Convolutional Neural Networks

1xN Pattern for Pruning Convolutional Neural Networks (paper) . This is Pytorch re-implementation of "1xN Pattern for Pruning Convolutional Neural Net

Mingbao Lin (林明宝) 29 Nov 29, 2022
Code and datasets for the paper "KnowPrompt: Knowledge-aware Prompt-tuning with Synergistic Optimization for Relation Extraction"

KnowPrompt Code and datasets for our paper "KnowPrompt: Knowledge-aware Prompt-tuning with Synergistic Optimization for Relation Extraction" Requireme

ZJUNLP 137 Dec 31, 2022
PyTorch implementation of DD3D: Is Pseudo-Lidar needed for Monocular 3D Object detection?

PyTorch implementation of DD3D: Is Pseudo-Lidar needed for Monocular 3D Object detection? (ICCV 2021), Dennis Park*, Rares Ambrus*, Vitor Guizilini, Jie Li, and Adrien Gaidon.

Toyota Research Institute - Machine Learning 364 Dec 27, 2022
Analyzing basic network responses to novel classes

novelty-detection Analyzing how AlexNet responds to novel classes with varying degrees of similarity to pretrained classes from ImageNet. If you find

Noam Eshed 34 Oct 02, 2022
Scaling Vision with Sparse Mixture of Experts

Scaling Vision with Sparse Mixture of Experts This repository contains the code for training and fine-tuning Sparse MoE models for vision (V-MoE) on I

Google Research 290 Dec 25, 2022
Neural Ensemble Search for Performant and Calibrated Predictions

Neural Ensemble Search Introduction This repo contains the code accompanying the paper: Neural Ensemble Search for Performant and Calibrated Predictio

AutoML-Freiburg-Hannover 26 Dec 12, 2022