PyTorch implementation of "Continual Learning with Deep Generative Replay", NIPS 2017

Overview

pytorch-deep-generative-replay

PyTorch implementation of Continual Learning with Deep Generative Replay, NIPS 2017

model

Results

Continual Learning on Permutated MNISTs

  • Test precisions without replay (left), with exact replay (middle), and with Deep Generative Replay (right).

Continual Learning on MNIST-SVHN

  • Test precisions without replay (left), with exact replay (middle), and with Deep Generative Replay (right).

  • Generated samples from the scholar trained without any replay (left) and with Deep Generative Replay (right).

  • Training scholar's generator without replay (left) and with Deep Generative Replay (right).

Continual Learning on SVHN-MNIST

  • Test precisions without replay (left), with exact replay (middle), and with Deep Generative Replay (right).

  • Generated samples from the scholar trained without replay (left) and with Deep Generative Replay (right).

  • Training scholar's generator without replay (left) and with Deep Generative Replay (right).

Installation

$ git clone https://github.com/kuc2477/pytorch-deep-generative-replay
$ pip install -r pytorch-deep-generative-replay/requirements.txt

Commands

Usage

$ ./main.py --help
$ usage: PyTorch implementation of Deep Generative Replay [-h]
                                                          [--experiment {permutated-mnist,svhn-mnist,mnist-svhn}]
                                                          [--mnist-permutation-number MNIST_PERMUTATION_NUMBER]
                                                          [--mnist-permutation-seed MNIST_PERMUTATION_SEED]
                                                          --replay-mode
                                                          {exact-replay,generative-replay,none}
                                                          [--generator-z-size GENERATOR_Z_SIZE]
                                                          [--generator-c-channel-size GENERATOR_C_CHANNEL_SIZE]
                                                          [--generator-g-channel-size GENERATOR_G_CHANNEL_SIZE]
                                                          [--solver-depth SOLVER_DEPTH]
                                                          [--solver-reducing-layers SOLVER_REDUCING_LAYERS]
                                                          [--solver-channel-size SOLVER_CHANNEL_SIZE]
                                                          [--generator-c-updates-per-g-update GENERATOR_C_UPDATES_PER_G_UPDATE]
                                                          [--generator-iterations GENERATOR_ITERATIONS]
                                                          [--solver-iterations SOLVER_ITERATIONS]
                                                          [--importance-of-new-task IMPORTANCE_OF_NEW_TASK]
                                                          [--lr LR]
                                                          [--weight-decay WEIGHT_DECAY]
                                                          [--batch-size BATCH_SIZE]
                                                          [--test-size TEST_SIZE]
                                                          [--sample-size SAMPLE_SIZE]
                                                          [--image-log-interval IMAGE_LOG_INTERVAL]
                                                          [--eval-log-interval EVAL_LOG_INTERVAL]
                                                          [--loss-log-interval LOSS_LOG_INTERVAL]
                                                          [--checkpoint-dir CHECKPOINT_DIR]
                                                          [--sample-dir SAMPLE_DIR]
                                                          [--no-gpus]
                                                          (--train | --test)

To Run Full Experiments

# Run a visdom server and conduct full experiments
$ python -m visdom.server &
$ ./run_full_experiments

To Run a Single Experiment

# Run a visdom server and conduct a desired experiment
$ python -m visdom.server &
$ ./main.py --train --experiment=[permutated-mnist|svhn-mnist|mnist-svhn] --replay-mode=[exact-replay|generative-replay|none]

To Generate Images from the learned Scholar

$ # Run the command below and visit the "samples" directory
$ ./main.py --test --experiment=[permutated-mnist|svhn-mnist|mnist-svhn] --replay-mode=[exact-replay|generative-replay|none]

Note

  • I failed to find the supplementary materials that the authors mentioned in the paper to contain the experimental details. Thus, I arbitrarily chose a 4-convolutional-layer CNN as a solver in this project. If you know where I can find the additional materials, please let me know through the project's Github issue.

Reference

Author

Ha Junsoo / @kuc2477 / MIT License

Owner
Junsoo Ha
A graduate student @SNUVL
Junsoo Ha
Generate Cartoon Images using Generative Adversarial Network

AvatarGAN ✨ Generate Cartoon Images using DC-GAN Deep Convolutional GAN is a generative adversarial network architecture. It uses a couple of guidelin

Aakash Jhawar 50 Dec 29, 2022
Deep Q-network learning to play flappybird.

AI Plays Flappy Bird I've trained a DQN that learns to play flappy bird on it's own. Try the pre-trained model First install the pip requirements and

Anish Shrestha 3 Mar 01, 2022
A crossplatform menu bar application using mpv as DLNA Media Renderer.

Macast Chinese README A menu bar application using mpv as DLNA Media Renderer. Install MacOS || Windows || Debian Download link: Macast release latest

4.4k Jan 01, 2023
Just playing with getting CLIP Guided Diffusion running locally, rather than having to use colab.

CLIP-Guided-Diffusion Just playing with getting CLIP Guided Diffusion running locally, rather than having to use colab. Original colab notebooks by Ka

Nerdy Rodent 336 Dec 09, 2022
CVPR2020 Counterfactual Samples Synthesizing for Robust VQA

CVPR2020 Counterfactual Samples Synthesizing for Robust VQA This repo contains code for our paper "Counterfactual Samples Synthesizing for Robust Visu

72 Dec 22, 2022
Deep Residual Networks with 1K Layers

Deep Residual Networks with 1K Layers By Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun. Microsoft Research Asia (MSRA). Table of Contents Introduc

Kaiming He 856 Jan 06, 2023
tf2-keras implement yolov5

YOLOv5 in tesnorflow2.x-keras yolov5数据增强jupyter示例 Bilibili视频讲解地址: 《yolov5 解读,训练,复现》 Bilibili视频讲解PPT文件: yolov5_bilibili_talk_ppt.pdf Bilibili视频讲解PPT文件:

yangcheng 254 Jan 08, 2023
Scikit-learn compatible estimation of general graphical models

skggm : Gaussian graphical models using the scikit-learn API In the last decade, learning networks that encode conditional independence relationships

213 Jan 02, 2023
Implementation of the paper: "SinGAN: Learning a Generative Model from a Single Natural Image"

SinGAN This is an unofficial implementation of SinGAN from someone who's been sitting right next to SinGAN's creator for almost five years. Please ref

35 Nov 10, 2022
Our solution for SSN Invente 2021's Hackathon

Our solution for SSN Invente 2021's Hackathon. To help maitain godowns in a pristine and safe condition using raspberry pi.

1 Jan 12, 2022
A strongly-typed genetic programming framework for Python

monkeys "If an army of monkeys were strumming on typewriters they might write all the books in the British Museum." monkeys is a framework designed to

H. Chase Stevens 115 Nov 27, 2022
N-Person-Check-Checker-Splitter - A calculator app use to divide checks

N-Person-Check-Checker-Splitter This is my from-scratch programmed calculator ap

2 Feb 15, 2022
Source Code for ICSE 2022 Paper - ``Can We Achieve Fairness Using Semi-Supervised Learning?''

Fair-SSL Source Code for ICSE 2022 Paper - Can We Achieve Fairness Using Semi-Supervised Learning? Ethical bias in machine learning models has become

1 Dec 18, 2021
Transfer SemanticKITTI labeles into other dataset/sensor formats.

LiDAR-Transfer Transfer SemanticKITTI labeles into other dataset/sensor formats. Content Convert datasets (NUSCENES, FORD, NCLT) to KITTI format Minim

Photogrammetry & Robotics Bonn 64 Nov 21, 2022
Vanilla and Prototypical Networks with Random Weights for image classification on Omniglot and mini-ImageNet. Made with Python3.

vanilla-rw-protonets-project Vanilla Prototypical Networks and PNs with Random Weights for image classification on Omniglot and mini-ImageNet. Made wi

Giovani Candido 8 Aug 31, 2022
Compare GAN code.

Compare GAN This repository offers TensorFlow implementations for many components related to Generative Adversarial Networks: losses (such non-saturat

Google 1.8k Jan 05, 2023
Open source repository for the code accompanying the paper 'Non-Rigid Neural Radiance Fields Reconstruction and Novel View Synthesis of a Deforming Scene from Monocular Video'.

Non-Rigid Neural Radiance Fields This is the official repository for the project "Non-Rigid Neural Radiance Fields: Reconstruction and Novel View Synt

Facebook Research 296 Dec 29, 2022
transfer attack; adversarial examples; black-box attack; unrestricted Adversarial Attacks on ImageNet; CVPR2021 天池黑盒竞赛

transfer_adv CVPR-2021 AIC-VI: unrestricted Adversarial Attacks on ImageNet CVPR2021 安全AI挑战者计划第六期赛道2:ImageNet无限制对抗攻击 介绍 : 深度神经网络已经在各种视觉识别问题上取得了最先进的性能。

25 Dec 08, 2022
Implementation for Stankevičiūtė et al. "Conformal time-series forecasting", NeurIPS 2021.

Conformal time-series forecasting Implementation for Stankevičiūtė et al. "Conformal time-series forecasting", NeurIPS 2021. If you use our code in yo

Kamilė Stankevičiūtė 36 Nov 21, 2022
Code for the Paper: Alexandra Lindt and Emiel Hoogeboom.

Discrete Denoising Flows This repository contains the code for the experiments presented in the paper Discrete Denoising Flows [1]. To give a short ov

Alexandra Lindt 3 Oct 09, 2022