songplays datamart provide details about the musical taste of our customers and can help us to improve our recomendation system

Overview

Sparkify

Songplays User activity datamart

Status GitHub Issues GitHub Pull Requests License


The following document describes the model used to build the songplays datamart table and the respective ETL process.

Table of Contents

About

The songplays datamart provide details about the musical taste of our customers and can help us to improve our recomendation system.

This document describes the model of songplays table datamart on sparkify_app schema inside a container sparkify_postgres, and the Python code to load new data. The production directory and data must be simmilar to those in mnt/data/log_data and mnt/data/song_data paths in this repository.

🏁 Getting Started

First you need to have the right permissions to access the source files and write them into sparkify_app tables that generates the songplays datamart table. Contact the owners or your team leader for more information.

Data Model and Schema


songplays datamart

Source files and owners

File or table Description Directory Owner
YYYY-MM-DD-events.json User events. mnt/data/log_data/YYYY/11 Person 1
.json Song data. mnt/data/song_data/a Person 2
songplays Datamart for recomendation system. sparkify_app.songplays Person 3
artists Dimension table for artists. sparkify_app.artists Person 1
songs Dimension table for songs. sparkify_app.songs Person 1
time Dimension table for streaming start time for a given song. sparkify_app.time Person 2
users Dimension table for users. sparkify_app.users Person 3

Prerequisites


To run this project first you need to install the Docker Engine for your operational system and Docker Compose.

After installing and configuring the Docker tools, download this repository and create a folder named postgres that will store all sparkify_postgres service data. To build the proper images and run the services, just execute the following command inside this repository:

docker-compose up

If the service runs successfully you should see something like this:

...
sparkify_python      | 28/30 files processed.
sparkify_python      | 29/30 files processed.
sparkify_python      | 30/30 files processed.
sparkify_python exited with code 0

You can also check the job by following these steps:

  • Open your browser and access localhost:16543: pga1

    • Enter with the following credentials to authenticate:
  • After you log in, click on the Servers option at the upper corner on the left: pga2

    • You will be asked to enter with the PostgreSQL credentials:
      • User: sparkifypsql
      • Password: p4ssw0rd
  • Select the Query Tools under the Tools menu: pga3

  • Under the Query Editor, run the following query:

    SELECT * FROM sparkify_app.songplays WHERE song_id is NOT NULL and artist_id is NOT NULL;
    • You should get only 5 rows. pga3

Microservice architecture

The following image represents the microservice architecture for this project: topology

Where:

  • sparkify_python: runs all Python scripts and stores raw data.
  • sparkify_postgres: runs Postgre and stores the database.
  • sparkify_pgadmin: runs the pgAdmin tool to monitor the sparkify_postgres service.

⛏️ Built Using

✍️ Authors

Owner
Leandro Kellermann de Oliveira
Leandro Kellermann de Oliveira
A crude Hy handle on Pandas library

Quickstart Hyenas is a curde Hy handle written on top of Pandas API to allow for more elegant access to data-scientist's powerhouse that is Pandas. In

Peter Výboch 4 Sep 05, 2022
Instant search for and access to many datasets in Pyspark.

SparkDataset Provides instant access to many datasets right from Pyspark (in Spark DataFrame structure). Drop a star if you like the project. 😃 Motiv

Souvik Pratiher 31 Dec 16, 2022
An easy-to-use feature store

A feature store is a data storage system for data science and machine-learning. It can store raw data and also transformed features, which can be fed straight into an ML model or training script.

ByteHub AI 48 Dec 09, 2022
Analyse the limit order book in seconds. Zoom to tick level or get yourself an overview of the trading day.

Analyse the limit order book in seconds. Zoom to tick level or get yourself an overview of the trading day. Correlate the market activity with the Apple Keynote presentations.

2 Jan 04, 2022
Bearsql allows you to query pandas dataframe with sql syntax.

Bearsql adds sql syntax on pandas dataframe. It uses duckdb to speedup the pandas processing and as the sql engine

14 Jun 22, 2022
Sensitivity Analysis Library in Python (Numpy). Contains Sobol, Morris, Fractional Factorial and FAST methods.

Sensitivity Analysis Library (SALib) Python implementations of commonly used sensitivity analysis methods. Useful in systems modeling to calculate the

SALib 663 Jan 05, 2023
Detecting Underwater Objects (DUO)

Underwater object detection for robot picking has attracted a lot of interest. However, it is still an unsolved problem due to several challenges. We take steps towards making it more realistic by ad

27 Dec 12, 2022
An orchestration platform for the development, production, and observation of data assets.

Dagster An orchestration platform for the development, production, and observation of data assets. Dagster lets you define jobs in terms of the data f

Dagster 6.2k Jan 08, 2023
A distributed block-based data storage and compute engine

Nebula is an extremely-fast end-to-end interactive big data analytics solution. Nebula is designed as a high-performance columnar data storage and tabular OLAP engine.

Columns AI 131 Dec 26, 2022
Candlestick Pattern Recognition with Python and TA-Lib

Candlestick-Pattern-Recognition-with-Python-and-TA-Lib Goal Look at the S&P500 to try and get a better understanding of these candlestick patterns and

Ganesh Jainarain 11 Oct 07, 2022
Evaluation of a Monocular Eye Tracking Set-Up

Evaluation of a Monocular Eye Tracking Set-Up As part of my master thesis, I implemented a new state-of-the-art model that is based on the work of Che

Pascal 19 Dec 17, 2022
Py-price-monitoring - A Python price monitor

A Python price monitor This project was focused on Brazil, so the monitoring is

Samuel 1 Jan 04, 2022
MIR Cheatsheet - Survival Guidebook for MIR Researchers in the Lab

MIR Cheatsheet - Survival Guidebook for MIR Researchers in the Lab

SeungHeonDoh 3 Jul 02, 2022
Very useful and necessary functions that simplify working with data

Additional-function-for-pandas Very useful and necessary functions that simplify working with data random_fill_nan(module_name, nan) - Replaces all sp

Alexander Goldian 2 Dec 02, 2021
A Numba-based two-point correlation function calculator using a grid decomposition

A Numba-based two-point correlation function (2PCF) calculator using a grid decomposition. Like Corrfunc, but written in Numba, with simplicity and hackability in mind.

Lehman Garrison 3 Aug 24, 2022
CPSPEC is an astrophysical data reduction software for timing

CPSPEC manual Introduction CPSPEC is an astrophysical data reduction software for timing. Various timing properties, such as power spectra and cross s

Tenyo Kawamura 1 Oct 20, 2021
ASOUL直播间弹幕抓取&&数据分析

ASOUL直播间弹幕抓取&&数据分析(更新中) 这些文件用于爬取ASOUL直播间的弹幕(其他直播间也可以)和其他信息,以及简单的数据分析生成。

159 Dec 10, 2022
Aggregating gridded data (xarray) to polygons

A package to aggregate gridded data in xarray to polygons in geopandas using area-weighting from the relative area overlaps between pixels and polygons. Check out the binder link above for a sample c

Kevin Schwarzwald 42 Nov 09, 2022
An interactive grid for sorting, filtering, and editing DataFrames in Jupyter notebooks

qgrid Qgrid is a Jupyter notebook widget which uses SlickGrid to render pandas DataFrames within a Jupyter notebook. This allows you to explore your D

Quantopian, Inc. 2.9k Jan 08, 2023
Hidden Markov Models in Python, with scikit-learn like API

hmmlearn hmmlearn is a set of algorithms for unsupervised learning and inference of Hidden Markov Models. For supervised learning learning of HMMs and

2.7k Jan 03, 2023