MAT: Mask-Aware Transformer for Large Hole Image Inpainting

Related tags

Deep LearningMAT
Overview

MAT: Mask-Aware Transformer for Large Hole Image Inpainting (CVPR2022, Oral)

Wenbo Li, Zhe Lin, Kun Zhou, Lu Qi, Yi Wang, Jiaya Jia

[Paper]


News

This is the official implementation of MAT. The training and testing code is released. We also provide our masks for CelebA-HQ-val and Places-val here.


Visualization

We present a transformer-based model (MAT) for large hole inpainting with high fidelity and diversity.

large hole inpainting with pluralistic generation

Compared to other methods, the proposed MAT restores more photo-realistic images with fewer artifacts.

comparison with sotas

Usage

  1. Clone the repository.
    git clone https://github.com/fenglinglwb/MAT.git 
  2. Install the dependencies.
    • Python 3.7
    • PyTorch 1.7.1
    • Cuda 11.0
    • Other packages
    pip install -r requirements.txt

Quick Test

  1. We provide models trained on CelebA-HQ and Places365-Standard at 512x512 resolution. Download models from One Drive and put them into the 'pretrained' directory. The released models are retrained, and hence the visualization results may slightly differ from the paper.

  2. Obtain inpainted results by running

    python generate_image.py --network model_path --dpath data_path --outdir out_path [--mpath mask_path]

    where the mask path is optional. If not assigned, random 512x512 masks will be generated. Note that 0 and 1 values in a mask refer to masked and remained pixels.

    For example, run

    python generate_image.py --network pretrained/CelebA-HQ.pkl --dpath test_sets/CelebA-HQ/images --mpath test_sets/CelebA-HQ/masks --outdir samples

    Note. Our implementation only supports generating an image whose size is a multiple of 512. You need to pad or resize the image to make its size a multiple of 512. Please pad the mask with 0 values.

Train

For example, if you want to train a model on Places, run a bash script with

python train.py \
    --outdir=output_path \
    --gpus=8 \
    --batch=32 \
    --metrics=fid36k5_full \
    --data=training_data_path \
    --data_val=val_data_path \
    --dataloader=datasets.dataset_512.ImageFolderMaskDataset \
    --mirror=True \
    --cond=False \
    --cfg=places512 \
    --aug=noaug \
    --generator=networks.mat.Generator \
    --discriminator=networks.mat.Discriminator \
    --loss=losses.loss.TwoStageLoss \
    --pr=0.1 \
    --pl=False \
    --truncation=0.5 \
    --style_mix=0.5 \
    --ema=10 \
    --lr=0.001

Description of arguments:

  • outdir: output path for saving logs and models
  • gpus: number of used gpus
  • batch: number of images in all gpus
  • metrics: find more metrics in 'metrics/metric_main.py'
  • data: training data
  • data_val: validation data
  • dataloader: you can define your own dataloader
  • mirror: use flip augmentation or not
  • cond: use class info, default: false
  • cfg: configuration, find more details in 'train.py'
  • aug: use augmentation of style-gan-ada or not, default: false
  • generator: you can define your own generator
  • discriminator: you can define your own discriminator
  • loss: you can define your own loss
  • pr: ratio of perceptual loss
  • pl: use path length regularization or not, default: false
  • truncation: truncation ratio proposed in stylegan
  • style_mix: style mixing ratio proposed in stylegan
  • ema: exponoential moving averate, ~K samples
  • lr: learning rate

Evaluation

We provide evaluation scrtips for FID/U-IDS/P-IDS/LPIPS/PSNR/SSIM/L1 metrics in the 'evaluation' directory. Only need to give paths of your results and GTs.

Citation

@inproceedings{li2022mat,
    title={MAT: Mask-Aware Transformer for Large Hole Image Inpainting},
    author={Li, Wenbo and Lin, Zhe and Zhou, Kun and Qi, Lu and Wang, Yi and Jia, Jiaya},
    booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
    year={2022}
}

License and Acknowledgement

The code and models in this repo are for research purposes only. Our code is bulit upon StyleGAN2-ADA.

Rational Activation Functions - Replacing Padé Activation Units

Rational Activations - Learnable Rational Activation Functions First introduce as PAU in Padé Activation Units: End-to-end Learning of Activation Func

<a href=[email protected]"> 38 Nov 22, 2022
Monitora la qualità della ricezione dei segnali radio nelle province siciliane.

FMap-server Monitora la qualità della ricezione dei segnali radio nelle province siciliane. Conversion data Frequency - StationName maps are stored in

Triglie 5 May 24, 2021
Mortgage-loan-prediction - Show how to perform advanced Analytics and Machine Learning in Python using a full complement of PyData utilities

Mortgage-loan-prediction - Show how to perform advanced Analytics and Machine Learning in Python using a full complement of PyData utilities

Deepak Nandwani 1 Dec 31, 2021
TorchGRL is the source code for our paper Graph Convolution-Based Deep Reinforcement Learning for Multi-Agent Decision-Making in Mixed Traffic Environments for IV 2022.

TorchGRL TorchGRL is the source code for our paper Graph Convolution-Based Deep Reinforcement Learning for Multi-Agent Decision-Making in Mixed Traffi

XXQQ 42 Dec 09, 2022
Code for the paper "Zero-shot Natural Language Video Localization" (ICCV2021, Oral).

Zero-shot Natural Language Video Localization (ZSNLVL) by Pseudo-Supervised Video Localization (PSVL) This repository is for Zero-shot Natural Languag

Computer Vision Lab. @ GIST 37 Dec 27, 2022
A Demo server serving Bert through ONNX with GPU written in Rust with <3

Demo BERT ONNX server written in rust This demo showcase the use of onnxruntime-rs on BERT with a GPU on CUDA 11 served by actix-web and tokenized wit

Xavier Tao 28 Jan 01, 2023
Easy to use and customizable SOTA Semantic Segmentation models with abundant datasets in PyTorch

Semantic Segmentation Easy to use and customizable SOTA Semantic Segmentation models with abundant datasets in PyTorch Features Applicable to followin

sithu3 530 Jan 05, 2023
Virtual hand gesture mouse using a webcam

NonMouse 日本語のREADMEはこちら This is an application that allows you to use your hand itself as a mouse. The program uses a web camera to recognize your han

Yuki Takeyama 55 Jan 01, 2023
The code for paper "Contrastive Spatio-Temporal Pretext Learning for Self-supervised Video Representation" which is accepted by AAAI 2022

Contrastive Spatio Temporal Pretext Learning for Self-supervised Video Representation (AAAI 2022) The code for paper "Contrastive Spatio-Temporal Pret

8 Jun 30, 2022
Graph-total-spanning-trees - A Python script to get total number of Spanning Trees in a Graph

Total number of Spanning Trees in a Graph This is a python script just written f

Mehdi I. 0 Jul 18, 2022
TransMIL: Transformer based Correlated Multiple Instance Learning for Whole Slide Image Classification

TransMIL: Transformer based Correlated Multiple Instance Learning for Whole Slide Image Classification [NeurIPS 2021] Abstract Multiple instance learn

132 Dec 30, 2022
🥈78th place in Riiid Answer Correctness Prediction competition

Riiid Answer Correctness Prediction Introduction This repository is the code that placed 78th in Riiid Answer Correctness Prediction competition. Requ

Jungwoo Park 10 Jul 14, 2022
Yolox-bytetrack-sample - Python sample of MOT (Multiple Object Tracking) using YOLOX and ByteTrack

yolox-bytetrack-sample YOLOXとByteTrackを用いたMOT(Multiple Object Tracking)のPythonサン

KazuhitoTakahashi 12 Nov 09, 2022
Deep learning (neural network) based remote photoplethysmography: how to extract pulse signal from video using deep learning tools

Deep-rPPG: Camera-based pulse estimation using deep learning tools Deep learning (neural network) based remote photoplethysmography: how to extract pu

Terbe Dániel 138 Dec 17, 2022
Rank1 Conversation Emotion Detection Task

Rank1-Conversation_Emotion_Detection_Task accuracy macro-f1 recall 0.826 0.7544 0.719 基于预训练模型和时序预测模型的对话情感探测任务 1 摘要 针对对话情感探测任务,本文将其分为文本分类和时间序列预测两个子任务,分

Yuchen Han 2 Nov 28, 2021
Custom Implementation of Non-Deep Networks

ParNet Custom Implementation of Non-deep Networks arXiv:2110.07641 Ankit Goyal, Alexey Bochkovskiy, Jia Deng, Vladlen Koltun Official Repository https

Pritama Kumar Nayak 20 May 27, 2022
The code for 'Deep Residual Fourier Transformation for Single Image Deblurring'

Deep Residual Fourier Transformation for Single Image Deblurring Xintian Mao, Yiming Liu, Wei Shen, Qingli Li and Yan Wang code will be released soon

145 Dec 13, 2022
This project is based on our SIGGRAPH 2021 paper, ROSEFusion: Random Optimization for Online DenSE Reconstruction under Fast Camera Motion .

ROSEFusion 🌹 This project is based on our SIGGRAPH 2021 paper, ROSEFusion: Random Optimization for Online DenSE Reconstruction under Fast Camera Moti

219 Dec 27, 2022
Official pytorch implement for “Transformer-Based Source-Free Domain Adaptation”

Official implementation for TransDA Official pytorch implement for “Transformer-Based Source-Free Domain Adaptation”. Overview: Result: Prerequisites:

stanley 54 Dec 22, 2022
A lane detection integrated Real-time Instance Segmentation based on YOLACT (You Only Look At CoefficienTs)

Real-time Instance Segmentation and Lane Detection This is a lane detection integrated Real-time Instance Segmentation based on YOLACT (You Only Look

Jin 4 Dec 30, 2022