πŸ“Š Charts with pure python

Overview

chart

MIT Travis PyPI Downloads

A zero-dependency python package that prints basic charts to a Jupyter output

Charts supported:

  • Bar graphs
  • Scatter plots
  • Histograms
  • πŸ‘ πŸ“Š πŸ‘

Examples

Bar graphs can be drawn quickly with the bar function:

from chart import bar

x = [500, 200, 900, 400]
y = ['marc', 'mummify', 'chart', 'sausagelink']

bar(x, y)
       marc: β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡             
    mummify: β–‡β–‡β–‡β–‡β–‡β–‡β–‡                       
      chart: β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡
sausagelink: β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡                              

And the bar function can accept columns from a pd.DataFrame:

from chart import bar
import pandas as pd

df = pd.DataFrame({
    'artist': ['Tame Impala', 'Childish Gambino', 'The Knocks'],
    'listens': [8_456_831, 18_185_245, 2_556_448]
})
bar(df.listens, df.artist, width=20, label_width=11, mark='πŸ”Š')
Tame Impala: πŸ”ŠπŸ”ŠπŸ”ŠπŸ”ŠπŸ”ŠπŸ”ŠπŸ”ŠπŸ”ŠπŸ”Š           
Childish Ga: πŸ”ŠπŸ”ŠπŸ”ŠπŸ”ŠπŸ”ŠπŸ”ŠπŸ”ŠπŸ”ŠπŸ”ŠπŸ”ŠπŸ”ŠπŸ”ŠπŸ”ŠπŸ”ŠπŸ”ŠπŸ”ŠπŸ”ŠπŸ”ŠπŸ”ŠπŸ”Š
 The Knocks: πŸ”ŠπŸ”ŠπŸ”Š                                

Histograms are just as easy:

from chart import histogram

x = [1, 2, 4, 3, 3, 1, 7, 9, 9, 1, 3, 2, 1, 2]

histogram(x)
β–‡        
β–‡        
β–‡        
β–‡        
β–‡ β–‡      
β–‡ β–‡      
β–‡ β–‡      
β–‡ β–‡     β–‡
β–‡ β–‡     β–‡
β–‡ β–‡   β–‡ β–‡

And they can accept objects created by scipy:

from chart import histogram
import scipy.stats as stats
import numpy as np

np.random.seed(14)
n = stats.norm(loc=0, scale=10)

histogram(n.rvs(100), bins=14, height=7, mark='πŸ‘')
            πŸ‘              
            πŸ‘   πŸ‘          
            πŸ‘ πŸ‘ πŸ‘          
            πŸ‘ πŸ‘ πŸ‘          
        πŸ‘   πŸ‘ πŸ‘ πŸ‘          
      πŸ‘ πŸ‘ πŸ‘ πŸ‘ πŸ‘ πŸ‘ πŸ‘ πŸ‘ πŸ‘    
      πŸ‘ πŸ‘ πŸ‘ πŸ‘ πŸ‘ πŸ‘ πŸ‘ πŸ‘ πŸ‘   πŸ‘

Scatter plots can be drawn with a simple scatter call:

from chart import scatter

x = range(0, 20)
y = range(0, 20)

scatter(x, y)
                                       β€’
                                   β€’ β€’  
                                 β€’      
                             β€’ β€’        
                         β€’ β€’            
                       β€’                
                  β€’  β€’                  
                β€’                       
            β€’ β€’                         
        β€’ β€’                             
      β€’                                 
  β€’ β€’                                   
β€’                                       

And at this point you gotta know it works with any np.array:

from chart import scatter
import numpy as np

np.random.seed(1)
N = 100
x = np.random.normal(100, 50, size=N)
y = x * -2 + 25 + np.random.normal(0, 25, size=N)

scatter(x, y, width=20, height=9, mark='^')
^^                  
 ^                  
    ^^^             
    ^^^^^^^         
       ^^^^^^       
        ^^^^^^^     
            ^^^^    
             ^^^^^ ^
                ^^ ^

In fact, all chart functions work with pandas, numpy, scipy and regular python objects.

Preprocessors

In order to create the simple outputs generated by bar, histogram, and scatter I had to create a couple of preprocessors, namely: NumberBinarizer and RangeScaler.

I tried to adhere to the scikit-learn API in their construction. Although you won't need them to use chart here they are for your tinkering:

from chart.preprocessing import NumberBinarizer

nb = NumberBinarizer(bins=4)
x = range(10)
nb.fit(x)
nb.transform(x)
[0, 0, 0, 1, 1, 2, 2, 3, 3, 3]
from chart.preprocessing import RangeScaler

rs = RangeScaler(out_range=(0, 10), round=False)
x = range(50, 59)
rs.fit_transform(x)
[0.0, 1.25, 2.5, 3.75, 5.0, 6.25, 7.5, 8.75, 10.0]

Installation

pip install chart

Contribute

For feature requests or bug reports, please use Github Issues

Inspiration

I wanted a super-light-weight library that would allow me to quickly grok data. Matplotlib had too many dependencies, and Altair seemed overkill. Though I really like the idea of termgraph, it didn't really fit well or integrate with my Jupyter workflow. Here's to chart πŸ₯‚ (still can't believe I got it on PyPI)

Owner
Max Humber
Human
Max Humber
FURY - A software library for scientific visualization in Python

Free Unified Rendering in Python A software library for scientific visualization in Python. General Information β€’ Key Features β€’ Installation β€’ How to

169 Dec 21, 2022
a plottling library for python, based on D3

Hello August 2013 Hello! Maybe you're looking for a nice Python interface to build interactive, javascript based plots that look as nice as all those

Mike Dewar 1.4k Dec 28, 2022
Simple function to plot multiple barplots in the same figure.

Simple function to plot multiple barplots in the same figure. Supports padding and custom color.

Matthias Jakobs 2 Feb 21, 2022
AB-test-analyzer - Python class to perform AB test analysis

AB-test-analyzer Python class to perform AB test analysis Overview This repo con

13 Jul 16, 2022
Data visualization using matplotlib

Data visualization using matplotlib project instructions Top 5 Most Common Coffee Origins In this visualization I used data from Ankur Chavda on Kaggl

13 Oct 27, 2021
Python Data Structures for Humansβ„’.

Schematics Python Data Structures for Humansβ„’. About Project documentation: https://schematics.readthedocs.io/en/latest/ Schematics is a Python librar

Schematics 2.5k Dec 28, 2022
Some problems of SSLC ( High School ) before outputs and after outputs

Some problems of SSLC ( High School ) before outputs and after outputs 1] A Python program and its output (output1) while running the program is given

Fayas Noushad 3 Dec 01, 2021
Process dataframe in a easily way.

Popanda Written by Shengxuan Wang at OSU. Used for processing dataframe, especially for machine learning. The name is from "Po" in the movie Kung Fu P

ShawnWang 1 Dec 24, 2021
Design your own matplotlib stylefile interactively

Tired of playing with font sizes and other matplotlib parameters every time you start a new project or write a new plotting function? Want all you plots have the same style? Use matplotlib configurat

yobi byte 207 Dec 08, 2022
An animation engine for explanatory math videos

Powered By: An animation engine for explanatory math videos Hi there, I'm Zheer πŸ‘‹ I'm a Software Engineer and student!! 🌱 I’m currently learning eve

Zaheer ud Din Faiz 2 Nov 04, 2021
Joyplots in Python with matplotlib & pandas :chart_with_upwards_trend:

JoyPy JoyPy is a one-function Python package based on matplotlib + pandas with a single purpose: drawing joyplots (a.k.a. ridgeline plots). The code f

Leonardo Taccari 462 Jan 02, 2023
Cryptocurrency Centralized Exchange Visualization

This is a simple one that uses Grafina to visualize cryptocurrency from the Bitkub exchange. This service will make a request to the Bitkub API from your wallet and save the response to Postgresql. G

Popboon Mahachanawong 1 Nov 24, 2021
Blender addon that creates a temporary window of any type from the 3D View.

CreateTempWindow2.8 Blender addon that creates a temporary window of any type from the 3D View. Features Can the following window types: 3D View Graph

3 Nov 27, 2022
Time series visualizer is a flexible extension that provides filling world map by country from real data.

Time-series-visualizer Time series visualizer is a flexible extension that provides filling world map by country from csv or json file. You can know d

Long Ng 3 Jul 09, 2021
Plotly Dash Command Line Tools - Easily create and deploy Plotly Dash projects from templates

πŸ› οΈ dash-tools - Create and Deploy Plotly Dash Apps from Command Line | | | | | Create a templated multi-page Plotly Dash app with CLI in less than 7

Andrew Hossack 50 Dec 30, 2022
Open-source demos hosted on Dash Gallery

Dash Sample Apps This repository hosts the code for over 100 open-source Dash apps written in Python or R. They can serve as a starting point for your

Plotly 2.7k Jan 07, 2023
Splore - a simple graphical interface for scrolling through and exploring data sets of molecules

Scroll through and exPLORE molecule sets The splore framework aims to offer a si

3 Jun 18, 2022
This is a small repository for me to implement my simply Data Visualisation skills through Python.

Data Visualisations This is a small repository for me to implement my simply Data Visualisation skills through Python. Steam Population Chart from 10/

9 Dec 31, 2021
Jupyter notebook and datasets from the pandas Q&A video series

Python pandas Q&A video series Read about the series, and view all of the videos on one page: Easier data analysis in Python with pandas. Jupyter Note

Kevin Markham 2k Jan 05, 2023
A simple agent-based model used to teach the basics of OOP in my lectures

Pydemic A simple agent-based model of a pandemic. This is used to teach basic principles of object-oriented programming to master students. It is not

Fabien Maussion 2 Jun 08, 2022