Experiments for Neural Flows paper

Overview

Neural Flows: Efficient Alternative to Neural ODEs [arxiv]

TL;DR: We directly model the neural ODE solutions with neural flows, which is much faster and achieves better results on time series applications, since it avoids using expensive numerical solvers.

image

Marin Biloš, Johanna Sommer, Syama Sundar Rangapuram, Tim Januschowski, Stephan Günnemann

Abstract: Neural ordinary differential equations describe how values change in time. This is the reason why they gained importance in modeling sequential data, especially when the observations are made at irregular intervals. In this paper we propose an alternative by directly modeling the solution curves - the flow of an ODE - with a neural network. This immediately eliminates the need for expensive numerical solvers while still maintaining the modeling capability of neural ODEs. We propose several flow architectures suitable for different applications by establishing precise conditions on when a function defines a valid flow. Apart from computational efficiency, we also provide empirical evidence of favorable generalization performance via applications in time series modeling, forecasting, and density estimation.

This repository acts as a supplementary material which implements the models and experiments as described in the main paper. The definition of models relies on the stribor package for normalizing and neural flows. The baselines use torchdiffeq package for differentiable ODE solvers.

Installation

Install the local package nfe (which will also install all the dependencies):

pip install -e .

Download data

Download and preprocess real-world data and generate synthetic data (or run commands in download_all.sh manually):

. scripts/download_all.sh

Many experiments will automatically download data if it's not already downloaded so this step is optional.

Note: MIMIC-III and IV have to be downloaded manually. Use notebooks in data_preproc to preprocess data.

After downloading everything, your directory tree should look like this:

├── nfe
│   ├── experiments
│   │   ├── base_experiment.py
│   │   ├── data
│   │   │   ├── activity
│   │   │   ├── hopper
│   │   │   ├── mimic3
│   │   │   ├── mimic4
│   │   │   ├── physionet
│   │   │   ├── stpp
│   │   │   ├── synth
│   │   │   └── tpp
│   │   ├── gru_ode_bayes
│   │   ├── latent_ode
│   │   ├── stpp
│   │   ├── synthetic
│   │   └── tpp
│   ├── models
│   └── train.py
├── scripts
│   ├── download_all.sh
│   └── run_all.sh
└── setup.py

Models

Models are located in nfe/models. It contains the implementation of CouplingFlow and ResNetFlow. The ODE models and continuous (ODE or flow-based) GRU and LSTM layers can be found in the same directory.

Example: Coupling flow

import torch
from nfe import CouplingFlow

dim = 4
model = CouplingFlow(
    dim,
    n_layers=2, # Number of flow layers
    hidden_dims=[32, 32], # Hidden layers in single flow
    time_net='TimeLinear', # Time embedding network
)

t = torch.rand(3, 10, 1) # Time points at which IVP is evaluated
x0 = torch.randn(3, 1, dim) # Initial conditions at t=0

xt = model(x0, t) # IVP solutions at t given x0
xt.shape # torch.Size([3, 10, 4])

Example: GRU flow

import torch
from nfe import GRUFlow

dim = 4
model = GRUFlow(
    dim,
    n_layers=2, # Number of flow layers
    hidden_dims=[32, 32], # Hidden layers in single flow
    time_net='TimeTanh', # Time embedding network
)

t = torch.rand(3, 10, 1) # Time points at which IVP is evaluated
x = torch.randn(3, 10, dim) # Initial conditions, RNN inputs

xt = model(x, t) # IVP solutions at t_i given x_{1:i}
xt.shape # torch.Size([3, 10, 4])

Experiments

Run all experiments: . scripts/run_all.sh. Or run individual commands manually.

Synthetic

Example:

python -m nfe.train --experiment synthetic --data [ellipse|sawtooth|sink|square|triangle] --model [ode|flow] --flow-model [coupling|resnet] --solver [rk4|dopri5]

Smoothing

Example:

python -m nfe.train --experiment latent_ode --data [activity|hopper|physionet] --classify [0|1] --model [ode|flow] --flow-model [coupling|resnet]

Reference:

  • Yulia Rubanova, Ricky Chen, David Duvenaud. "Latent ODEs for Irregularly-Sampled Time Series" (2019) [paper]. We adapted the code from here.

Filtering

Request MIMIC-III and IV data, and download locally. Use notebooks to preprocess data.

Example:

python -m nfe.train --experiment gru_ode_bayes --data [mimic3|mimic4] --model [ode|flow] --odenet gru --flow-model [gru|resnet]

Reference:

  • Edward De Brouwer, Jaak Simm, Adam Arany, Yves Moreau. "GRU-ODE-Bayes: Continuous modeling of sporadically-observed time series" (2019) [paper]. We adapted the code from here.

Temporal point process

Example:

python -m nfe.train --experiment tpp --data [poisson|renewal|hawkes1|hawkes2|mooc|reddit|wiki] --model [rnn|ode|flow] --flow-model [coupling|resnet] --decoder [continuous|mixture] --rnn [gru|lstm] --marks [0|1]

Reference:

  • Junteng Jia, Austin R. Benson. "Neural Jump Stochastic Differential Equations" (2019) [paper]. We adapted the code from here.

Spatio-temporal

Example:

python -m nfe.train --experiment stpp --data [bike|covid|earthquake] --model [ode|flow] --density-model [independent|attention]

Reference:

  • Ricky T. Q. Chen, Brandon Amos, Maximilian Nickel. "Neural Spatio-Temporal Point Processes" (2021) [paper]. We adapted the code from here.

Citation

@article{bilos2021neuralflows,
  title={{N}eural Flows: {E}fficient Alternative to Neural {ODE}s},
  author={Bilo{\v{s}}, Marin and Sommer, Johanna and Rangapuram, Syama Sundar and Januschowski, Tim and G{\"u}nnemann, Stephan},
  journal={Advances in Neural Information Processing Systems},
  year={2021}
}
The source code for CATSETMAT: Cross Attention for Set Matching in Bipartite Hypergraphs

catsetmat The source code for CATSETMAT: Cross Attention for Set Matching in Bipartite Hypergraphs To be able to run it, add catsetmat to PYTHONPATH H

2 Dec 19, 2022
Uncertain natural language inference

Uncertain Natural Language Inference This repository hosts the code for the following paper: Tongfei Chen*, Zhengping Jiang*, Adam Poliak, Keisuke Sak

Tongfei Chen 14 Sep 01, 2022
Adjusting for Autocorrelated Errors in Neural Networks for Time Series

Adjusting for Autocorrelated Errors in Neural Networks for Time Series This repository is the official implementation of the paper "Adjusting for Auto

Fan-Keng Sun 51 Nov 05, 2022
An inofficial PyTorch implementation of PREDATOR based on KPConv.

PREDATOR: Registration of 3D Point Clouds with Low Overlap An inofficial PyTorch implementation of PREDATOR based on KPConv. The code has been tested

ZhuLifa 14 Aug 03, 2022
Code for our CVPR 2022 Paper "GEN-VLKT: Simplify Association and Enhance Interaction Understanding for HOI Detection"

GEN-VLKT Code for our CVPR 2022 paper "GEN-VLKT: Simplify Association and Enhance Interaction Understanding for HOI Detection". Contributed by Yue Lia

Yue Liao 47 Dec 04, 2022
The NEOSSat is a dual-mission microsatellite designed to detect potentially hazardous Earth-orbit-crossing asteroids and track objects that reside in deep space

The NEOSSat is a dual-mission microsatellite designed to detect potentially hazardous Earth-orbit-crossing asteroids and track objects that reside in deep space

John Salib 2 Jan 30, 2022
This is an official implementation of the CVPR2022 paper "Blind2Unblind: Self-Supervised Image Denoising with Visible Blind Spots".

Blind2Unblind: Self-Supervised Image Denoising with Visible Blind Spots Blind2Unblind Citing Blind2Unblind @inproceedings{wang2022blind2unblind, tit

demonsjin 58 Dec 06, 2022
(CVPR 2022 Oral) Official implementation for "Surface Representation for Point Clouds"

RepSurf - Surface Representation for Point Clouds [CVPR 2022 Oral] By Haoxi Ran* , Jun Liu, Chengjie Wang ( * : corresponding contact) The pytorch off

Haoxi Ran 264 Dec 23, 2022
Evolution Strategies in PyTorch

Evolution Strategies This is a PyTorch implementation of Evolution Strategies. Requirements Python 3.5, PyTorch = 0.2.0, numpy, gym, universe, cv2 Wh

Andrew Gambardella 333 Nov 14, 2022
Source code for "UniRE: A Unified Label Space for Entity Relation Extraction.", ACL2021.

UniRE Source code for "UniRE: A Unified Label Space for Entity Relation Extraction.", ACL2021. Requirements python: 3.7.6 pytorch: 1.8.1 transformers:

Wang Yijun 109 Nov 29, 2022
Prototype python implementation of the ome-ngff table spec

Prototype python implementation of the ome-ngff table spec

Kevin Yamauchi 8 Nov 20, 2022
Vit-ImageClassification - Pytorch ViT for Image classification on the CIFAR10 dataset

Vit-ImageClassification Introduction This project uses ViT to perform image clas

Kaicheng Yang 4 Jun 01, 2022
Breast Cancer Classification Model is applied on a different dataset

Breast Cancer Classification Model is applied on a different dataset

1 Feb 04, 2022
A simple python stock Predictor

Python Stock Predictor A simple python stock Predictor Demo Run Locally Clone the project git clone https://github.com/yashraj-n/stock-price-predict

Yashraj narke 5 Nov 29, 2021
🚗 INGI Dakar 2K21 - Be the first one on the finish line ! 🚗

🚗 INGI Dakar 2K21 - Be the first one on the finish line ! 🚗 This year's first semester Club Info challenge will put you at the head of a car racing

ClubINFO INGI (UCLouvain) 6 Dec 10, 2021
CC-GENERATOR - A python script for generating CC

CC-GENERATOR A python script for generating CC NOTE: This tool is for Educationa

Lêkzï 6 Oct 14, 2022
Source code for "Pack Together: Entity and Relation Extraction with Levitated Marker"

PL-Marker Source code for Pack Together: Entity and Relation Extraction with Levitated Marker. Quick links Overview Setup Install Dependencies Data Pr

THUNLP 173 Dec 30, 2022
MINERVA: An out-of-the-box GUI tool for offline deep reinforcement learning

MINERVA is an out-of-the-box GUI tool for offline deep reinforcement learning, designed for everyone including non-programmers to do reinforcement learning as a tool.

Takuma Seno 80 Nov 06, 2022
Visual Memorability for Robotic Interestingness via Unsupervised Online Learning (ECCV 2020 Oral and TRO)

Visual Interestingness Refer to the project description for more details. This code based on the following paper. Chen Wang, Yuheng Qiu, Wenshan Wang,

Chen Wang 36 Sep 08, 2022
A lightweight deep network for fast and accurate optical flow estimation.

FastFlowNet: A Lightweight Network for Fast Optical Flow Estimation The official PyTorch implementation of FastFlowNet (ICRA 2021). Authors: Lingtong

Tone 161 Jan 03, 2023