A Lightweight Hyperparameter Optimization Tool ๐Ÿš€

Overview

Lightweight Hyperparameter Optimization ๐Ÿš€

Pyversions PyPI version Code style: black Colab

The mle-hyperopt package provides a simple and intuitive API for hyperparameter optimization of your Machine Learning Experiment (MLE) pipeline. It supports real, integer & categorical search variables and single- or multi-objective optimization.

Core features include the following:

  • API Simplicity: strategy.ask(), strategy.tell() interface & space definition.
  • Strategy Diversity: Grid, random, coordinate search, SMBO & wrapping around FAIR's nevergrad.
  • Search Space Refinement based on the top performing configs via strategy.refine(top_k=10).
  • Export of configurations to execute via e.g. python train.py --config_fname config.yaml.
  • Storage & reload search logs via strategy.save(<log_fname>), strategy.load(<log_fname>).

For a quickstart check out the notebook blog ๐Ÿ“– .

The API ๐ŸŽฎ

from mle_hyperopt import RandomSearch

# Instantiate random search class
strategy = RandomSearch(real={"lrate": {"begin": 0.1,
                                        "end": 0.5,
                                        "prior": "log-uniform"}},
                        integer={"batch_size": {"begin": 32,
                                                "end": 128,
                                                "prior": "uniform"}},
                        categorical={"arch": ["mlp", "cnn"]})

# Simple ask - eval - tell API
configs = strategy.ask(5)
values = [train_network(**c) for c in configs]
strategy.tell(configs, values)

Implemented Search Types ๐Ÿ”ญ

Search Type Description search_config
drawing GridSearch Search over list of discrete values -
drawing RandomSearch Random search over variable ranges refine_after, refine_top_k
drawing CoordinateSearch Coordinate-wise optimization with fixed defaults order, defaults
drawing SMBOSearch Sequential model-based optimization base_estimator, acq_function, n_initial_points
drawing NevergradSearch Multi-objective nevergrad wrapper optimizer, budget_size, num_workers

Variable Types & Hyperparameter Spaces ๐ŸŒ

Variable Type Space Specification
drawing real Real-valued Dict: begin, end, prior/bins (grid)
drawing integer Integer-valued Dict: begin, end, prior/bins (grid)
drawing categorical Categorical List: Values to search over

Installation โณ

A PyPI installation is available via:

pip install mle-hyperopt

Alternatively, you can clone this repository and afterwards 'manually' install it:

git clone https://github.com/mle-infrastructure/mle-hyperopt.git
cd mle-hyperopt
pip install -e .

Further Options ๐Ÿšด

Saving & Reloading Logs ๐Ÿช

# Storing & reloading of results from .pkl
strategy.save("search_log.json")
strategy = RandomSearch(..., reload_path="search_log.json")

# Or manually add info after class instantiation
strategy = RandomSearch(...)
strategy.load("search_log.json")

Search Decorator ๐Ÿงถ

from mle_hyperopt import hyperopt

@hyperopt(strategy_type="grid",
          num_search_iters=25,
          real={"x": {"begin": 0., "end": 0.5, "bins": 5},
                "y": {"begin": 0, "end": 0.5, "bins": 5}})
def circle(config):
    distance = abs((config["x"] ** 2 + config["y"] ** 2))
    return distance

strategy = circle()

Storing Configuration Files ๐Ÿ“‘

# Store 2 proposed configurations - eval_0.yaml, eval_1.yaml
strategy.ask(2, store=True)
# Store with explicit configuration filenames - conf_0.yaml, conf_1.yaml
strategy.ask(2, store=True, config_fnames=["conf_0.yaml", "conf_1.yaml"])

Retrieving Top Performers & Visualizing Results ๐Ÿ“‰

# Get the top k best performing configurations
id, configs, values = strategy.get_best(top_k=4)

# Plot timeseries of best performing score over search iterations
strategy.plot_best()

# Print out ranking of best performers
strategy.print_ranking(top_k=3)

Refining the Search Space of Your Strategy ๐Ÿช“

# Refine the search space after 5 & 10 iterations based on top 2 configurations
strategy = RandomSearch(real={"lrate": {"begin": 0.1,
                                        "end": 0.5,
                                        "prior": "log-uniform"}},
                        integer={"batch_size": {"begin": 1,
                                                "end": 5,
                                                "prior": "uniform"}},
                        categorical={"arch": ["mlp", "cnn"]},
                        search_config={"refine_after": [5, 10],
                                       "refine_top_k": 2})

# Or do so manually using `refine` method
strategy.tell(...)
strategy.refine(top_k=2)

Note that the search space refinement is only implemented for random, SMBO and nevergrad-based search strategies.

Development & Milestones for Next Release

You can run the test suite via python -m pytest -vv tests/. If you find a bug or are missing your favourite feature, feel free to contact me @RobertTLange or create an issue ๐Ÿค— .

  • Robust type checking with isinstance(self.log[0]["objective"], (float, int, np.integer, np.float))
  • Add improvement method indicating if score is better than best stored one
  • Fix logging message when log is stored
  • Add save option for best plot
  • Make json serializer more robust for numpy data types
  • Make sure search space refinement works for different batch sizes
  • Add args, kwargs into decorator
  • Check why SMBO can propose same config multiple times. Add Hutter reference.
Comments
  • [FEATURE] Hyperband

    [FEATURE] Hyperband

    Hi! I was wondering if the Hyperband hyperparameter algorithm is something you want implemented.

    I'm willing to spend some time working on it if there's interest.

    opened by colligant 5
  • [FEATURE] Option to pickle the whole strategy

    [FEATURE] Option to pickle the whole strategy

    Right now strategy.save produces a JSON with the log. Any reason you didn't opt for (or have an option of) pickling the whole strategy? Two motivations for this:

    1. Not having to re-init the strategy with all the args/kwargs
    2. Not having to loop through tell! SMBO can take quite some time to do this.
    opened by alexander-soare 4
  • Type checking strategy.log could be made more flexible?

    Type checking strategy.log could be made more flexible?

    Yay first issue! Congrats Robert, this is a great interface. Haven't used a hyperopt library in a while and this felt so easy to pick up.


    For example https://github.com/RobertTLange/mle-hyperopt/blob/57eb806e95c854f48f8faac2b2dc182d2180d393/mle_hyperopt/search.py#L251

    raises an error if my objective is numpy.float64. Also noticed https://github.com/RobertTLange/mle-hyperopt/blob/57eb806e95c854f48f8faac2b2dc182d2180d393/mle_hyperopt/search.py#L206

    Could we just have

    isinstance(strategy.log[0]['objective'], (float, int))
    

    which would cover the numpy types?

    opened by alexander-soare 4
  • Successive Halving, Hyperband, PBT

    Successive Halving, Hyperband, PBT

    • [x] Robust type checking with isinstance(self.log[0]["objective"], (float, int, np.integer, np.float))
    • [x] Add improvement method indicating if score is better than best stored one
    • [x] Fix logging message when log is stored
    • [x] Add save option for best plot
    • [x] Make json serializer more robust for numpy data types
    • [x] Add possibility to save as .pkl file by providing filename in .save method ending with .pkl (issue #2)
    • [x] Add args, kwargs into decorator
    • [x] Adds synchronous Successive Halving (SuccessiveHalvingSearch - issue #3)
    • [x] Adds synchronous HyperBand (HyperbandSearch - issue #3)
    • [x] Adds synchronous PBT (PBTSearch - issue #4 )
    opened by RobertTLange 1
  • [Feature] Synchronous PBT

    [Feature] Synchronous PBT

    Move PBT ask/tell functionality from mle-toolbox experimental to mle-hyperopt. Is there any literature/empirical evidence for the importance of being asynchronous?

    enhancement 
    opened by RobertTLange 1
Releases(v0.0.7)
  • v0.0.7(Feb 20, 2022)

    Added

    • Log reloading helper for post-processing.

    Fixed

    • Bug fix in mle-search with imports of dependencies. Needed to append path.
    • Bug fix with cleaning nested dictionaries. Have to make sure not to delete entire sub-dictionary.
    Source code(tar.gz)
    Source code(zip)
  • v0.0.6(Feb 20, 2022)

    Added

    • Adds a command line interface for running a sequential search given a python script <script>.py containing a function main(config), a default configuration file <base>.yaml & a search configuration <search>.yaml. The main function should return a single scalar performance score. You can then start the search via:

      mle-search <script>.py --base_config <base>.yaml --search_config <search>.yaml --num_iters <search_iters>
      

      Or short via:

      mle-search <script>.py -base <base>.yaml -search <search>.yaml -iters <search_iters>
      
    • Adds doc-strings to all functionalities.

    Changed

    • Make it possible to optimize parameters in nested dictionaries. Added helpers flatten_config and unflatten_config. For shaping 'sub1/sub2/vname' <-> {sub1: {sub2: {vname: v}}}
    • Make start-up message also print fixed parameter settings.
    • Cleaned up decorator with the help of Strategies wrapper.
    Source code(tar.gz)
    Source code(zip)
  • v0.0.5(Jan 5, 2022)

    Added

    • Adds possibility to store and reload entire strategies as pkl file (as asked for in issue #2).
    • Adds improvement method indicating if score is better than best stored one
    • Adds save option for best plot
    • Adds args, kwargs into decorator
    • Adds synchronous Successive Halving (SuccessiveHalvingSearch - issue #3)
    • Adds synchronous HyperBand (HyperbandSearch - issue #3)
    • Adds synchronous PBT (PBTSearch - issue #4)
    • Adds option to save log in tell method
    • Adds small torch mlp example for SH/Hyperband/PBT w. logging/scheduler
    • Adds print welcome/update message for strategy specific info

    Changed

    • Major internal restructuring:
      • clean_data: Get rid of extra data provided in configuration file
      • tell_search: Update model of search strategy (e.g. SMBO/Nevergrad)
      • log_search: Add search specific log data to evaluation log
      • update_search: Refine search space/change active strategy etc.
    • Also allow to store checkpoint of trained models in tell method.
    • Fix logging message when log is stored
    • Make json serializer more robust for numpy data types
    • Robust type checking with isinstance(self.log[0]["objective"], (float, int, np.integer, np.float))
    • Update NB to include mle-scheduler example
    • Make PBT explore robust for integer/categorical valued hyperparams
    • Calculate total batches & their sizes for hyperband
    Source code(tar.gz)
    Source code(zip)
  • v0.0.3(Oct 24, 2021)

    • Fixes CoordinateSearch active grid search dimension updating. We have to account for the fact that previous coordinates are not evaluated again after switching the active variable.
    • Generalizes NevergradSearch to wrap around all search strategies.
    • Adds rich logging to all console print statements.
    • Updates documentation and adds text to getting_started.ipynb.
    Source code(tar.gz)
    Source code(zip)
  • v0.0.2(Oct 20, 2021)

    • Fixes import bug when using PyPi installation.
    • Enhances documentation and test coverage.
    • Adds search space refinement for nevergrad and smbo search strategies via refine_after and refine_top_k:
    strategy = SMBOSearch(
            real={"lrate": {"begin": 0.1, "end": 0.5, "prior": "uniform"}},
            integer={"batch_size": {"begin": 1, "end": 5, "prior": "uniform"}},
            categorical={"arch": ["mlp", "cnn"]},
            search_config={
                "base_estimator": "GP",
                "acq_function": "gp_hedge",
                "n_initial_points": 5,
                "refine_after": 5,
                "refine_top_k": 2,
            },
            seed_id=42,
            verbose=True
        )
    
    • Adds additional strategy boolean option maximize_objective to maximize instead of performing default black-box minimization.
    Source code(tar.gz)
    Source code(zip)
  • v0.0.1(Oct 16, 2021)

    Base API implementation:

    from mle_hyperopt import RandomSearch
    
    # Instantiate random search class
    strategy = RandomSearch(real={"lrate": {"begin": 0.1,
                                            "end": 0.5,
                                            "prior": "log-uniform"}},
                            integer={"batch_size": {"begin": 32,
                                                    "end": 128,
                                                    "prior": "uniform"}},
                            categorical={"arch": ["mlp", "cnn"]})
    
    # Simple ask - eval - tell API
    configs = strategy.ask(5)
    values = [train_network(**c) for c in configs]
    strategy.tell(configs, values)
    
    Source code(tar.gz)
    Source code(zip)
Implementation of Vaswani, Ashish, et al. "Attention is all you need."

Attention Is All You Need Paper Implementation This is my from-scratch implementation of the original transformer architecture from the following pape

Brando Koch 195 Dec 30, 2022
Code for Deterministic Neural Networks with Appropriate Inductive Biases Capture Epistemic and Aleatoric Uncertainty

Deep Deterministic Uncertainty This repository contains the code for Deterministic Neural Networks with Appropriate Inductive Biases Capture Epistemic

Jishnu Mukhoti 69 Nov 28, 2022
Resco: A simple python package that report the effect of deep residual learning

resco Description resco is a simple python package that report the effect of dee

Pierre-Arthur Claudรฉ 1 Jun 28, 2022
RL and distillation in CARLA using a factorized world model

World on Rails Learning to drive from a world on rails Dian Chen, Vladlen Koltun, Philipp Krรคhenbรผhl, arXiv techical report (arXiv 2105.00636) This re

Dian Chen 131 Dec 16, 2022
Prevent `CUDA error: out of memory` in just 1 line of code.

๐Ÿจ Koila Koila solves CUDA error: out of memory error painlessly. Fix it with just one line of code, and forget it. ๐Ÿš€ Features ๐Ÿ™… Prevents CUDA error

RenChu Wang 1.7k Jan 02, 2023
Tutorials, assignments, and competitions for MIT Deep Learning related courses.

MIT Deep Learning This repository is a collection of tutorials for MIT Deep Learning courses. More added as courses progress. Tutorial: Deep Learning

Lex Fridman 9.5k Jan 07, 2023
Python implementation of 3D facial mesh exaggeration using the techniques described in the paper: Computational Caricaturization of Surfaces.

Python implementation of 3D facial mesh exaggeration using the techniques described in the paper: Computational Caricaturization of Surfaces.

Wonjong Jang 8 Nov 01, 2022
CATE: Computation-aware Neural Architecture Encoding with Transformers

CATE: Computation-aware Neural Architecture Encoding with Transformers Code for paper: CATE: Computation-aware Neural Architecture Encoding with Trans

16 Dec 27, 2022
ไธ€ๅฅ—ๅฎŒๆ•ด็š„ๅพฎๅš่ˆ†ๆƒ…ๅˆ†ๆžๆต็จ‹ไปฃ็ ๏ผŒๅŒ…ๆ‹ฌๅพฎๅš็ˆฌ่™ซใ€LDAไธป้ข˜ๅˆ†ๆžๅ’Œๆƒ…ๆ„Ÿๅˆ†ๆžใ€‚

ๅทฒ็ปๅฐ†้กน็›ฎ็š„ๅ…ณ้”ฎๆ–‡ไปถไธŠไผ ๏ผŒๅŒ…ๅซๅพฎๅš็ˆฌ่™ซใ€LDAไธป้ข˜ๅˆ†ๆžๅ’Œๆƒ…ๆ„Ÿๅˆ†ๆžไธ‰ไธช้ƒจๅˆ†ใ€‚ 1.ๅพฎๅš็ˆฌ่™ซ ๅฎž็Žฐๅพฎๅš่ฏ„่ฎบ็ˆฌๅ–ๅ’Œๅพฎๅš็”จๆˆทไฟกๆฏ็ˆฌๅ–๏ผŒไธ€ๅคฉๅคงๆฆ‚ๅไธ‡ๆกใ€‚ 2.LDAไธป้ข˜ๅˆ†ๆž ๅฎž็Žฐๆ–‡ๆกฃไธป้ข˜ๆŠฝๅ–๏ผŒๅŒ…ๆ‹ฌๆ•ฐๆฎๆธ…ๆด—ๅŠๅˆ†่ฏใ€ไธป้ข˜ๆ•ฐ็š„็กฎๅฎš๏ผˆไธป้ข˜ไธ€่‡ดๆ€งๅ’Œๅ›ฐๆƒ‘ๅบฆ๏ผ‰ๅ’Œๆœ€ไผ˜ไธป้ข˜ๆจกๅž‹็š„้€‰ๆ‹ฉ๏ผˆๆšดๅŠ›ๆœ็ดข๏ผ‰ใ€‚ 3.ๆƒ…ๆ„Ÿๅˆ†ๆž ๅฎž็Žฐ่ฏ„่ฎบๆ–‡ๆœฌ็š„

182 Jan 02, 2023
This is the dataset for testing the robustness of various VO/VIO methods

KAIST VIO dataset This is the dataset for testing the robustness of various VO/VIO methods You can download the whole dataset on KAIST VIO dataset Ind

1 Sep 01, 2022
Stock-history-display - something like a easy yearly review for your stock performance

Stock History Display Available on Heroku: https://stock-history-display.herokua

LiaoJJ 1 Jan 07, 2022
This source code is implemented using keras library based on "Automatic ocular artifacts removal in EEG using deep learning"

CSP_Deep_EEG This source code is implemented using keras library based on "Automatic ocular artifacts removal in EEG using deep learning" {https://www

Seyed Mahdi Roostaiyan 2 Nov 08, 2022
the code used for the preprint Embedding-based Instance Segmentation of Microscopy Images.

EmbedSeg Introduction This repository hosts the version of the code used for the preprint Embedding-based Instance Segmentation of Microscopy Images.

JugLab 88 Dec 25, 2022
A curated list of awesome game datasets, and tools to artificial intelligence in games

๐ŸŽฎ Awesome Game Datasets In computer science, Artificial Intelligence (AI) is intelligence demonstrated by machines. Its definition, AI research as th

Leonardo Mauro 454 Jan 03, 2023
NumPy๋กœ ๊ตฌํ˜„ํ•œ ๋”ฅ๋Ÿฌ๋‹ ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ์ž…๋‹ˆ๋‹ค. (์ž๋™ ๋ฏธ๋ถ„ ์ง€์›)

Deep Learning Library only using NumPy ๋ณธ ๋ ˆํฌ์ง€ํ† ๋ฆฌ๋Š” NumPy ๋งŒ์œผ๋กœ ๊ตฌํ˜„ํ•œ ๋”ฅ๋Ÿฌ๋‹ ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ์ž…๋‹ˆ๋‹ค. ์ž๋™ ๋ฏธ๋ถ„์ด ๊ตฌํ˜„๋˜์–ด ์žˆ์Šต๋‹ˆ๋‹ค. ์ž๋™ ๋ฏธ๋ถ„ ์ž๋™ ๋ฏธ๋ถ„์€ ๋ฏธ๋ถ„์„ ์ž๋™์œผ๋กœ ๊ณ„์‚ฐํ•ด์ฃผ๋Š” ๊ธฐ๋Šฅ์ž…๋‹ˆ๋‹ค. ์•„๋ž˜ ์ฝ”๋“œ๋Š” ์ž๋™ ๋ฏธ๋ถ„์„ ํ™œ์šฉํ•ด ์—ญ์ „ํŒŒ

์กฐ์ค€ํฌ 17 Aug 16, 2022
Cooperative multi-agent reinforcement learning for high-dimensional nonequilibrium control

Cooperative multi-agent reinforcement learning for high-dimensional nonequilibrium control Official implementation of: Cooperative multi-agent reinfor

0 Nov 16, 2021
Code for "Multi-Compound Transformer for Accurate Biomedical Image Segmentation"

News The code of MCTrans has been released. if you are interested in contributing to the standardization of the medical image analysis community, plea

97 Jan 05, 2023
Narya API allows you track soccer player from camera inputs, and evaluate them with an Expected Discounted Goal (EDG) Agent

Narya The Narya API allows you track soccer player from camera inputs, and evaluate them with an Expected Discounted Goal (EDG) Agent. This repository

Paul Garnier 121 Dec 30, 2022
Identify the emotion of multiple speakers in an Audio Segment

MevonAI - Speech Emotion Recognition Identify the emotion of multiple speakers in a Audio Segment Report Bug ยท Request Feature Try the Demo Here Table

Suyash More 110 Dec 03, 2022
A simple python module to generate anchor (aka default/prior) boxes for object detection tasks.

PyBx WIP A simple python module to generate anchor (aka default/prior) boxes for object detection tasks. Calculated anchor boxes are returned as ndarr

thatgeeman 4 Dec 15, 2022