Node-level Graph Regression with Deep Gaussian Process Models

Overview

Node-level Graph Regression with Deep Gaussian Process Models

Prerequests

our implementation is mainly based on tensorflow 1.x and gpflow 1.x:

python 3.x (3.7 tested)
conda install tensorflow-gpu==1.15
pip install keras==2.3.1
pip install gpflow==1.5
pip install gpuinfo

Besides, some basic packages like numpy are also needed. It's maybe easy to wrap the codes for TF2.0 and GPflow2, but it's not tested yet.

Specification

Source code and experiment result are both provided. Unzip two archive files before using experiment notebooks.

Files

  • dgp_graph/: cores codes of the DGPG model.
    • impl_parallel.py: a fast node-level computation parallelized implementation, invoked by all experiments.
    • my_op.py: some custom tensorflow operations used in the implementation.
    • impl.py: a basic loop-based implementation, easy to understand but not practical, leaving just for calibration.
  • data/: datasets.
  • doubly_stochastic_dgp/: codes from repository DGP
  • compatible/: codes to make the DGP source codes compatible with gpflow1.5.
  • gpflow_monitor/: monitoring tool for gpflow models, from this repo.
  • GRN inference: code and data for the GRN inference experiment.
  • demo_city45.ipynb: jupyter notebooks for city45 dataset experiment.
  • experiments.zip: jupyter notebooks for other experiments.
  • results.zip: contains original jupyter notebooks results. (exported as HTML files for archive)
  • run_toy.sh: shell script to run additional experiment.
  • toy_main.py: code for additional experiment (Traditional ML methods and DGPG with linear kernel).
  • ER-0.1.ipynb: example script for analyzing time-varying graph structures.

Experiments

The experiments are based on python src files and demonstrated by jupyter notebooks. The source of an experiment is under directory src/experiments.zip and the corresponding result is exported as a static HTML file stored in the directory results.zip. They are organized by dataset names:

  1. Synthetic Datasets

For theoretical analysis.

  • demo_toy_run1.ipynb

  • demo_toy_run2.ipynb

  • demo_toy_run3.ipynb

  • demo_toy_run4.ipynb

  • demo_toy_run5.ipynb

For graph signal analysis on time-varying graphs.

  • ER-0.05.ipynb

  • ER-0.2.ipynb

  • RWP-0.1.ipynb

  • RWP-0.2.ipynb

  • RWP-0.3.ipynb

  1. Small Datasets
  • demo_city45.ipynb
  • demo_city45_linear.ipynb (linear kernel)
  • demo_city45_baseline.ipynb (traditional regression methods)
  • demo_etex.ipynb
  • demo_etex_linear.ipynb
  • demo_etex_baseline.ipynb
  • demo_fmri.ipynb
  • demo_fmri_linear.ipynb
  • demo_fmri_baseline.ipynb
  1. Large Datasets (traffic flow prediction)
  • LA
    • demo_la_15min.ipynb
    • demo_la_30min.ipynb
    • demo_la_60min.ipynb
  • BAY
    • demo_bay_15min.ipynb
    • demo_bay_30min.ipynb
    • demo_bay_60min.ipynb
This repository contains the code for TACL2021 paper: SummaC: Re-Visiting NLI-based Models for Inconsistency Detection in Summarization

SummaC: Summary Consistency Detection This repository contains the code for TACL2021 paper: SummaC: Re-Visiting NLI-based Models for Inconsistency Det

Philippe Laban 24 Jan 03, 2023
ULMFiT for Genomic Sequence Data

Genomic ULMFiT This is an implementation of ULMFiT for genomics classification using Pytorch and Fastai. The model architecture used is based on the A

Karl 276 Dec 12, 2022
Repo for the Tutorials of Day1-Day3 of the Nordic Probabilistic AI School 2021 (https://probabilistic.ai/)

ProbAI 2021 - Probabilistic Programming and Variational Inference Tutorial with Pryo Day 1 (June 14) Slides Notebook: students_PPLs_Intro Notebook: so

PGM-Lab 46 Nov 01, 2022
Tensorflow Tutorials using Jupyter Notebook

Tensorflow Tutorials using Jupyter Notebook TensorFlow tutorials written in Python (of course) with Jupyter Notebook. Tried to explain as kindly as po

Sungjoon 2.6k Dec 22, 2022
Code for "PV-RAFT: Point-Voxel Correlation Fields for Scene Flow Estimation of Point Clouds", CVPR 2021

PV-RAFT This repository contains the PyTorch implementation for paper "PV-RAFT: Point-Voxel Correlation Fields for Scene Flow Estimation of Point Clou

Yi Wei 43 Dec 05, 2022
Code for Paper Predicting Osteoarthritis Progression via Unsupervised Adversarial Representation Learning

Predicting Osteoarthritis Progression via Unsupervised Adversarial Representation Learning (c) Tianyu Han and Daniel Truhn, RWTH Aachen University, 20

Tianyu Han 7 Nov 22, 2022
NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling

NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling For Official repo of NU-Wave: A Diffusion Probabilistic Model for Neural Audio Up

Rishikesh (ऋषिकेश) 38 Oct 11, 2022
Release of the ConditionalQA dataset

ConditionalQA Datasets accompanying the paper ConditionalQA: A Complex Reading Comprehension Dataset with Conditional Answers. Disclaimer This dataset

14 Oct 17, 2022
This is our ARTS test set, an enriched test set to probe Aspect Robustness of ABSA.

This is the repository for our 2020 paper "Tasty Burgers, Soggy Fries: Probing Aspect Robustness in Aspect-Based Sentiment Analysis". Data We provide

35 Nov 16, 2022
This is a library for training and applying sparse fine-tunings with torch and transformers.

This is a library for training and applying sparse fine-tunings with torch and transformers. Please refer to our paper Composable Sparse Fine-Tuning f

Cambridge Language Technology Lab 37 Dec 30, 2022
MonoRec: Semi-Supervised Dense Reconstruction in Dynamic Environments from a Single Moving Camera

MonoRec: Semi-Supervised Dense Reconstruction in Dynamic Environments from a Single Moving Camera

Felix Wimbauer 494 Jan 06, 2023
Edge-aware Guidance Fusion Network for RGB-Thermal Scene Parsing

EGFNet Edge-aware Guidance Fusion Network for RGB-Thermal Scene Parsing Dataset and Results Test maps: 百度网盘 提取码:zust Citation @ARTICLE{ author={Zhou,

ShaohuaDong 10 Dec 08, 2022
CS_Final_Metal_surface_detection - This is a final project for CoderSchool Machine Learning bootcamp on 29/12/2021.

CS_Final_Metal_surface_detection This is a final project for CoderSchool Machine Learning bootcamp on 29/12/2021. The project is based on the dataset

Cuong Vo 1 Dec 29, 2021
A framework to train language models to learn invariant representations.

Invariant Language Modeling Implementation of the training for invariant language models. Motivation Modern pretrained language models are critical co

6 Nov 16, 2022
MT-GAN-PyTorch - PyTorch Implementation of Learning to Transfer: Unsupervised Domain Translation via Meta-Learning

MT-GAN-PyTorch PyTorch Implementation of AAAI-2020 Paper "Learning to Transfer: Unsupervised Domain Translation via Meta-Learning" Dependency: Python

29 Oct 19, 2022
StarGAN v2 - Official PyTorch Implementation (CVPR 2020)

StarGAN v2 - Official PyTorch Implementation StarGAN v2: Diverse Image Synthesis for Multiple Domains Yunjey Choi*, Youngjung Uh*, Jaejun Yoo*, Jung-W

Clova AI Research 3.1k Jan 09, 2023
This script scrapes and stores the availability of timeslots for Car Driving Test at all RTA Serivce NSW centres in the state.

This script scrapes and stores the availability of timeslots for Car Driving Test at all RTA Serivce NSW centres in the state. Dependencies Account wi

Balamurugan Soundararaj 21 Dec 14, 2022
No-reference Image Quality Assessment(NIQA) Algorithms (BRISQUE, NIQE, PIQE, RankIQA, MetaIQA)

No-Reference Image Quality Assessment Algorithms No-reference Image Quality Assessment(NIQA) is a task of evaluating an image without a reference imag

Dae-Young Song 26 Jan 04, 2023
Simulated garment dataset for virtual try-on

Simulated garment dataset for virtual try-on This repository contains the dataset used in the following papers: Self-Supervised Collision Handling via

33 Dec 20, 2022
Hyper-parameter optimization for sklearn

hyperopt-sklearn Hyperopt-sklearn is Hyperopt-based model selection among machine learning algorithms in scikit-learn. See how to use hyperopt-sklearn

1.4k Jan 01, 2023