Open solution to the Toxic Comment Classification Challenge

Overview

Starter code: Kaggle Toxic Comment Classification Challenge

More competitions 🎇

Check collection of public projects 🎁 , where you can find multiple Kaggle competitions with code, experiments and outputs.

Here, at Neptune we enjoy participating in the Kaggle competitions. Toxic Comment Classification Challenge is especially interesting because it touches important issue of online harassment.

Ensemble our predictions in the cloud!

You need to be registered to neptune.ml to be able to use our predictions for your ensemble models.

  • click start notebook
  • choose browse button
  • select the neptune_ensembling.ipynb file from this repository.
  • choose worker type: gcp-large is the recommended one.
  • run first few cells to load our predictions on the held out validation set along with the labels
  • grid search over many possible parameter options. The more runs you choose the longer it will run.
  • train your second level, ensemble model (it should take less than an hour once you have the parameters)
  • load our predictions on the test set
  • feed our test set predictions to your ensemble model and get final predictions
  • save your submission file
  • click on browse files and find your submission file to download it.

Running the notebook as is got 0.986+ on the LB.

Disclaimer

In this open source solution you will find references to the neptune.ml. It is free platform for community Users, which we use daily to keep track of our experiments. Please note that using neptune.ml is not necessary to proceed with this solution. You may run it as plain Python script 😉 .

The idea

We are contributing starter code that is easy to use and extend. We did it before with Cdiscount’s Image Classification Challenge and we believe that it is correct way to open data science to the wider community and encourage more people to participate in Challenges. This starter is ready-to-use end-to-end solution. Since all computations are organized in separate steps, it is also easy to extend. Check devbook.ipynb for more information about different pipelines.

Now we want to go one step further and invite you to participate in the development of this analysis pipeline. At the later stage of the competition (early February) we will invite top contributors to join our team on Kaggle.

Contributing

You are welcome to extend this pipeline and contribute your own models or procedures. Please refer to the CONTRIBUTING for more details.

Installation

option 1: Neptune cloud

on the neptune site

  • log in: neptune accound login
  • create new project named toxic: Follow the link Projects (top bar, left side), then click New project button. This action will generate project-key TOX, which is already listed in the neptune.yaml.

run setup commands

$ git clone https://github.com/neptune-ml/kaggle-toxic-starter.git
$ pip3 install neptune-cli
$ neptune login

start experiment

$ neptune send --environment keras-2.0-gpu-py3 --worker gcp-gpu-medium --config best_configs/fasttext_gru.yaml -- train_evaluate_predict_cv_pipeline --pipeline_name fasttext_gru --model_level first

This should get you to 0.9852 Happy Training :)

Refer to Neptune documentation and Getting started: Neptune Cloud for more.

option 2: local install

Please refer to the Getting started: local instance for installation procedure.

Solution visualization

Below end-to-end pipeline is visualized. You can run exactly this one! pipeline_001

We have also prepared something simpler to just get you started:

pipeline_002

User support

There are several ways to seek help:

  1. Read project's Wiki, where we publish descriptions about the code, pipelines and neptune.
  2. Kaggle discussion is our primary way of communication.
  3. You can submit an issue directly in this repo.
This is the main repository of open-sourced speech technology by Huawei Noah's Ark Lab.

Speech-Backbones This is the main repository of open-sourced speech technology by Huawei Noah's Ark Lab. Grad-TTS Official implementation of the Grad-

HUAWEI Noah's Ark Lab 295 Jan 07, 2023
aMLP Transformer Model for Japanese

aMLP-japanese Japanese aMLP Pretrained Model aMLPとは、Liu, Daiらが提案する、Transformerモデルです。 ざっくりというと、BERTの代わりに使えて、より性能の良いモデルです。 詳しい解説は、こちらの記事などを参考にしてください。 この

tanreinama 13 Aug 11, 2022
Deeply Supervised, Layer-wise Prediction-aware (DSLP) Transformer for Non-autoregressive Neural Machine Translation

Non-Autoregressive Translation with Layer-Wise Prediction and Deep Supervision Training Efficiency We show the training efficiency of our DSLP model b

Chenyang Huang 37 Jan 04, 2023
Task-based datasets, preprocessing, and evaluation for sequence models.

SeqIO: Task-based datasets, preprocessing, and evaluation for sequence models. SeqIO is a library for processing sequential data to be fed into downst

Google 290 Dec 26, 2022
NLP techniques such as named entity recognition, sentiment analysis, topic modeling, text classification with Python to predict sentiment and rating of drug from user reviews.

This file contains the following documents sumbited for Baruch CIS9665 group 9 fall 2021. 1. Dataset: drug_reviews.csv 2. python codes for text classi

Aarif Munwar Jahan 2 Jan 04, 2023
The swas programming language

The Swas programming language This is a language that was made for fun. Installation Step 0: Make sure you have python installed Step 1. Clone this re

Swas.py 19 Jul 18, 2022
Protein Language Model

ProteinLM We pretrain protein language model based on Megatron-LM framework, and then evaluate the pretrained model results on TAPE (Tasks Assessing P

THUDM 77 Dec 27, 2022
Learning General Purpose Distributed Sentence Representations via Large Scale Multi-task Learning

GenSen Learning General Purpose Distributed Sentence Representations via Large Scale Multi-task Learning Sandeep Subramanian, Adam Trischler, Yoshua B

Maluuba Inc. 309 Oct 19, 2022
Code for Emergent Translation in Multi-Agent Communication

Emergent Translation in Multi-Agent Communication PyTorch implementation of the models described in the paper Emergent Translation in Multi-Agent Comm

Facebook Research 75 Jul 15, 2022
ReCoin - Restoring our environment and businesses in parallel

Shashank Ojha, Sabrina Button, Abdellah Ghassel, Joshua Gonzales "Reduce Reuse R

sabrina button 1 Mar 14, 2022
Unlimited Call - Text Bombing Tool

FastBomber Unlimited Call - Text Bombing Tool Installation On Termux

Aryan 6 Nov 10, 2022
DaCy: The State of the Art Danish NLP pipeline using SpaCy

DaCy: A SpaCy NLP Pipeline for Danish DaCy is a Danish preprocessing pipeline trained in SpaCy. At the time of writing it has achieved State-of-the-Ar

Kenneth Enevoldsen 71 Jan 06, 2023
PyJPBoatRace: Python-based Japanese boatrace tools 🚤

pyjpboatrace :speedboat: provides you with useful tools for data analysis and auto-betting for boatrace.

5 Oct 29, 2022
Codename generator using WordNet parts of speech database

codenames Codename generator using WordNet parts of speech database References: https://possiblywrong.wordpress.com/2021/09/13/code-name-generator/ ht

possiblywrong 27 Oct 30, 2022
A sentence aligner for comparable corpora

About Yalign is a tool for extracting parallel sentences from comparable corpora. Statistical Machine Translation relies on parallel corpora (eg.. eur

Machinalis 128 Aug 24, 2022
Indobenchmark are collections of Natural Language Understanding (IndoNLU) and Natural Language Generation (IndoNLG)

Indobenchmark Toolkit Indobenchmark are collections of Natural Language Understanding (IndoNLU) and Natural Language Generation (IndoNLG) resources fo

Samuel Cahyawijaya 11 Aug 26, 2022
An official implementation for "CLIP4Clip: An Empirical Study of CLIP for End to End Video Clip Retrieval"

The implementation of paper CLIP4Clip: An Empirical Study of CLIP for End to End Video Clip Retrieval. CLIP4Clip is a video-text retrieval model based

ArrowLuo 456 Jan 06, 2023
Use AutoModelForSeq2SeqLM in Huggingface Transformers to train COMET

Training COMET using seq2seq setting Use AutoModelForSeq2SeqLM in Huggingface Transformers to train COMET. The codes are modified from run_summarizati

tqfang 9 Dec 17, 2022
🗣️ NALP is a library that covers Natural Adversarial Language Processing.

NALP: Natural Adversarial Language Processing Welcome to NALP. Have you ever wanted to create natural text from raw sources? If yes, NALP is for you!

Gustavo Rosa 21 Aug 12, 2022
Converts text into a PDF of handwritten notes

Text To Handwritten Notes Converts text into a PDF of handwritten notes Explore the docs » · Report Bug · Request Feature · Steps: $ git clone https:/

UVSinghK 63 Oct 09, 2022