Transformation spoken text to written text

Overview

Transformation spoken text to written text

This model is used for formatting raw asr text output from spoken text to written text (Eg. date, number, id, ...). It also supports formatting "out of vocab" by using external vocabulary.

Some of examples:

input  : tám giờ chín phút ngày mười tám tháng năm năm hai nghìn không trăm hai mươi hai
output : 8h9 18/5/2022

input  : mã số quy đê tê tê đê hai tám chéo hai không không ba
output : mã số qdttd28/2003

input  : thể tích tám mét khối trọng lượng năm mươi ki lô gam
output : thể tích 8 m3 trọng lượng 50 kg

input    : ngày hai tám tháng tư cô vít bùng phát ở sờ cốt lờn chiếm tám mươi phần trăm là biến chủng đen ta và bê ta
ex_vocab : ['scotland', 'covid', 'delta', 'beta']
output   : 28/4 covid bùng phát ở scotland chiếm 80 % là biến chủng delta và beta

Model architecture

Model architecture

Infer model

import torch
import model_handling
from data_handling import DataCollatorForNormSeq2Seq
from model_handling import EncoderDecoderSpokenNorm
import os
os.environ["CUDA_VISIBLE_DEVICES"] = ""

Init tokenizer and model

tokenizer = model_handling.init_tokenizer()
model = EncoderDecoderSpokenNorm.from_pretrained('nguyenvulebinh/spoken-norm', cache_dir=model_handling.cache_dir)
data_collator = DataCollatorForNormSeq2Seq(tokenizer)

Infer sample

bias_list = ['scotland', 'covid', 'delta', 'beta']
input_str = 'ngày hai tám tháng tư cô vít bùng phát ở sờ cốt lờn chiếm tám mươi phần trăm là biến chủng đen ta và bê ta'
inputs = tokenizer([input_str])
input_ids = inputs['input_ids']
attention_mask = inputs['attention_mask']
if len(bias_list) > 0:
    bias = data_collator.encode_list_string(bias_list)
    bias_input_ids = bias['input_ids']
    bias_attention_mask = bias['attention_mask']
else:
    bias_input_ids = None
    bias_attention_mask = None

inputs = {
    "input_ids": torch.tensor(input_ids),
    "attention_mask": torch.tensor(attention_mask),
    "bias_input_ids": bias_input_ids,
    "bias_attention_mask": bias_attention_mask,
}

Format input text with bias phrases

outputs = model.generate(**inputs, output_attentions=True, num_beams=1, num_return_sequences=1)

for output in outputs.cpu().detach().numpy().tolist():
    # print('\n', tokenizer.decode(output, skip_special_tokens=True).split(), '\n')
    print(tokenizer.sp_model.DecodePieces(tokenizer.decode(output, skip_special_tokens=True).split()))
28/4 covid bùng phát ở scotland chiếm 80 % là biến chủng delta và beta

Format input text without bias phrases

outputs = model.generate(**{
    "input_ids": torch.tensor(input_ids),
    "attention_mask": torch.tensor(attention_mask),
    "bias_input_ids": None,
    "bias_attention_mask": None,
}, output_attentions=True, num_beams=1, num_return_sequences=1)

for output in outputs.cpu().detach().numpy().tolist():
    # print('\n', tokenizer.decode(output, skip_special_tokens=True).split(), '\n')
    print(tokenizer.sp_model.DecodePieces(tokenizer.decode(output, skip_special_tokens=True).split()))
28/4 cô vít bùng phát ở sờ cốt lờn chiếm 80 % là biến chủng đen ta và bê ta

Contact

[email protected]

Follow

Owner
Nguyen Binh
Love to make computer become more human 🤖
Nguyen Binh
TextFlint is a multilingual robustness evaluation platform for natural language processing tasks,

TextFlint is a multilingual robustness evaluation platform for natural language processing tasks, which unifies general text transformation, task-specific transformation, adversarial attack, sub-popu

TextFlint 587 Dec 20, 2022
Backend for the Autocomplete platform. An AI assisted coding platform.

Introduction A custom predictor allows you to deploy your own prediction implementation, useful when the existing serving implementations don't fit yo

Tatenda Christopher Chinyamakobvu 1 Jan 31, 2022
:id: A python library for accurate and scalable fuzzy matching, record deduplication and entity-resolution.

Dedupe Python Library dedupe is a python library that uses machine learning to perform fuzzy matching, deduplication and entity resolution quickly on

Dedupe.io 3.6k Jan 02, 2023
Based on 125GB of data leaked from Twitch, you can see their monthly revenues from 2019-2021

Twitch Revenues Bu script'i kullanarak istediğiniz yayıncıların, Twitch'den sızdırılan 125 GB'lik veriye dayanarak, 2019-2021 arası aylık gelirlerini

4 Nov 11, 2021
AutoGluon: AutoML for Text, Image, and Tabular Data

AutoML for Text, Image, and Tabular Data AutoGluon automates machine learning tasks enabling you to easily achieve strong predictive performance in yo

Amazon Web Services - Labs 5.2k Dec 29, 2022
IndoBERTweet is the first large-scale pretrained model for Indonesian Twitter. Published at EMNLP 2021 (main conference)

IndoBERTweet 🐦 🇮🇩 1. Paper Fajri Koto, Jey Han Lau, and Timothy Baldwin. IndoBERTweet: A Pretrained Language Model for Indonesian Twitter with Effe

IndoLEM 40 Nov 30, 2022
The RWKV Language Model

RWKV-LM We propose the RWKV language model, with alternating time-mix and channel-mix layers: The R, K, V are generated by linear transforms of input,

PENG Bo 877 Jan 05, 2023
BERT-based Financial Question Answering System

BERT-based Financial Question Answering System In this example, we use Jina, PyTorch, and Hugging Face transformers to build a production-ready BERT-b

Bithiah Yuan 61 Sep 18, 2022
Predicting the usefulness of reviews given the review text and metadata surrounding the reviews.

Predicting Yelp Review Quality Table of Contents Introduction Motivation Goal and Central Questions The Data Data Storage and ETL EDA Data Pipeline Da

Jeff Johannsen 3 Nov 27, 2022
End-to-end image captioning with EfficientNet-b3 + LSTM with Attention

Image captioning End-to-end image captioning with EfficientNet-b3 + LSTM with Attention Model is seq2seq model. In the encoder pretrained EfficientNet

2 Feb 10, 2022
Toward Model Interpretability in Medical NLP

Toward Model Interpretability in Medical NLP LING380: Topics in Computational Linguistics Final Project James Cross ( 1 Mar 04, 2022

Sorce code and datasets for "K-BERT: Enabling Language Representation with Knowledge Graph",

K-BERT Sorce code and datasets for "K-BERT: Enabling Language Representation with Knowledge Graph", which is implemented based on the UER framework. R

Weijie Liu 834 Jan 09, 2023
Just a Basic like Language for Zeno INC

zeno-basic-language Just a Basic like Language for Zeno INC This is written in 100% python. this is basic language like language. so its not for big p

Voidy Devleoper 1 Dec 18, 2021
A fast Text-to-Speech (TTS) model. Work well for English, Mandarin/Chinese, Japanese, Korean, Russian and Tibetan (so far). 快速语音合成模型,适用于英语、普通话/中文、日语、韩语、俄语和藏语(当前已测试)。

简体中文 | English 并行语音合成 [TOC] 新进展 2021/04/20 合并 wavegan 分支到 main 主分支,删除 wavegan 分支! 2021/04/13 创建 encoder 分支用于开发语音风格迁移模块! 2021/04/13 softdtw 分支 支持使用 Sof

Atomicoo 161 Dec 19, 2022
Use fastai-v2 with HuggingFace's pretrained transformers

FastHugs Use fastai v2 with HuggingFace's pretrained transformers, see the notebooks below depending on your task: Text classification: fasthugs_seq_c

Morgan McGuire 111 Nov 16, 2022
Knowledge Graph,Question Answering System,基于知识图谱和向量检索的医疗诊断问答系统

Knowledge Graph,Question Answering System,基于知识图谱和向量检索的医疗诊断问答系统

wangle 823 Dec 28, 2022
fastai ulmfit - Pretraining the Language Model, Fine-Tuning and training a Classifier

fast.ai ULMFiT with SentencePiece from pretraining to deployment Motivation: Why even bother with a non-BERT / Transformer language model? Short answe

Florian Leuerer 26 May 27, 2022
Unsupervised Language Modeling at scale for robust sentiment classification

** DEPRECATED ** This repo has been deprecated. Please visit Megatron-LM for our up to date Large-scale unsupervised pretraining and finetuning code.

NVIDIA Corporation 1k Nov 17, 2022
A Japanese tokenizer based on recurrent neural networks

Nagisa is a python module for Japanese word segmentation/POS-tagging. It is designed to be a simple and easy-to-use tool. This tool has the following

325 Jan 05, 2023
Deep Learning for Natural Language Processing - Lectures 2021

This repository contains slides for the course "20-00-0947: Deep Learning for Natural Language Processing" (Technical University of Darmstadt, Summer term 2021).

0 Feb 21, 2022