This implements the learning and inference/proposal algorithm described in "Learning to Propose Objects, Krähenbühl and Koltun"

Related tags

Deep Learninglpo
Overview

Learning to propose objects

This implements the learning and inference/proposal algorithm described in "Learning to Propose Objects, Krähenbühl and Koltun, CVPR 2015".

Dependencies:

  • c++11 compiler (gcc >= 4.7)
  • cmake
  • boost-python
  • python (2.7 or 3.1+ should both work)
  • numpy
  • libmatio (optional)
  • libpng, libjpeg
  • Eigen 3 (3.2.0 or newer)
  • OpenMP (optional but recommended)

Compilation:

Go to the top level directory

mkdir build
cd build
cmake .. -DCMAKE_BUILD_TYPE=Release -DDATA_DIR=/path/to/datasets -DUSE_PYTHON=ON
make -j9

Here "-DUSE_PYTHON" specifies that the python wrapper should be built (highly recommended). You can use python 2.7 by specifying "-DUSE_PYTHON=2", any other argument will try to build a python 3 wrapper.

The flag "-DDATA_DIR=/path/to/datasets" is optional and can point to a directory containing the VOC2012, VOC2007 or COCO datset. Specify this path if you want to train or evaluate LPO on those dataset.

"/path/to/datasets" can be any directory containing subdirectories:

  • 'VOC2012/ImageSets'
  • 'VOC2012/SegmentationClass',
  • 'VOC2012/Annotations'
  • 'COCO/train2014'
  • 'COCO/val2014'
  • ...

and files:

  • 'COCO/instances_train2014.json'
  • 'COCO/instances_val2014.json'.

The coco files can be downloaded from http://mscoco.org/, the PASCAL VOC dataset http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2012/index.html .

The code should compile and run fine on both Linux and Mac OS, let me know if you have any difficulty or find a bug. For Windows you're on your own.

Experiments

The code to reproduce most results in the paper is included here. All experiments should be run from the src directory.

To generate the main comparison in table 3 run:

bash eval_all.sh

To analyze a model like table 2 run:

python analyze_model.py path/to/model

To do the bounding box evaluation call:

python eval_box.py path/to/output_file path/to/model1 path/to/model2 path/to/model3 path/to/model4

This will create a binary file measuring number of proposals vs best overlap per object. You can then use the results/box.py script to generate the bounding box evaluation and produce the plots. For your convenience we included the precomputed results of many prior methods on VOC 2012 in results/box/*.dat.

Citation

If you're using this code in a scientific publication please cite:

@inproceedings{kk-lpo-15,
  author    = {Philipp Kr{\"{a}}henb{\"{u}}hl and
               Vladlen Koltun},
  title     = {Learning to Propose Objects},
  booktitle = {CVPR},
  year      = {2015},
}

License

All my code is published under a BSD license, so feel free to reuse and/or share it. There are some dependencies which are under different licenses and/or patented. All those dependencies are located in the external directory.

Owner
Philipp Krähenbühl
Philipp Krähenbühl
NeuralCompression is a Python repository dedicated to research of neural networks that compress data

NeuralCompression is a Python repository dedicated to research of neural networks that compress data. The repository includes tools such as JAX-based entropy coders, image compression models, video c

Facebook Research 297 Jan 06, 2023
HyperCube: Implicit Field Representations of Voxelized 3D Models

HyperCube: Implicit Field Representations of Voxelized 3D Models Authors: Magdalena Proszewska, Marcin Mazur, Tomasz Trzcinski, Przemysław Spurek [Pap

Magdalena Proszewska 3 Mar 09, 2022
Official PyTorch implementation of "AASIST: Audio Anti-Spoofing using Integrated Spectro-Temporal Graph Attention Networks"

AASIST This repository provides the overall framework for training and evaluating audio anti-spoofing systems proposed in 'AASIST: Audio Anti-Spoofing

Clova AI Research 56 Jan 02, 2023
External Attention Network

Beyond Self-attention: External Attention using Two Linear Layers for Visual Tasks paper : https://arxiv.org/abs/2105.02358 EAMLP will come soon Jitto

MenghaoGuo 357 Dec 11, 2022
Simple command line tool for text to image generation using OpenAI's CLIP and Siren (Implicit neural representation network)

Deep Daze mist over green hills shattered plates on the grass cosmic love and attention a time traveler in the crowd life during the plague meditative

Phil Wang 4.4k Jan 03, 2023
Research code for the paper "How Good is Your Tokenizer? On the Monolingual Performance of Multilingual Language Models"

Introduction This repository contains research code for the ACL 2021 paper "How Good is Your Tokenizer? On the Monolingual Performance of Multilingual

AdapterHub 20 Aug 04, 2022
Stochastic Normalizing Flows

Stochastic Normalizing Flows We introduce stochasticity in Boltzmann-generating flows. Normalizing flows are exact-probability generative models that

AI4Science group, FU Berlin (Frank Noé and co-workers) 50 Dec 16, 2022
Official PyTorch implementation of "Rapid Neural Architecture Search by Learning to Generate Graphs from Datasets" (ICLR 2021)

Rapid Neural Architecture Search by Learning to Generate Graphs from Datasets This is the official PyTorch implementation for the paper Rapid Neural A

48 Dec 26, 2022
A check for whether the dependency jobs are all green.

alls-green A check for whether the dependency jobs are all green. Why? Do you have more than one job in your GitHub Actions CI/CD workflows setup? Do

Re:actors 33 Jan 03, 2023
Pytorch implementation of few-shot semantic image synthesis

Few-shot Semantic Image Synthesis Using StyleGAN Prior Our method can synthesize photorealistic images from dense or sparse semantic annotations using

40 Sep 26, 2022
LEDNet: A Lightweight Encoder-Decoder Network for Real-time Semantic Segmentation

LEDNet: A Lightweight Encoder-Decoder Network for Real-time Semantic Segmentation Table of Contents: Introduction Project Structure Installation Datas

Yu Wang 492 Dec 02, 2022
Code for NeurIPS 2021 paper "Curriculum Offline Imitation Learning"

README The code is based on the ILswiss. To run the code, use python run_experiment.py --nosrun -e your YAML file -g gpu id Generally, run_experim

ApexRL 12 Mar 19, 2022
A Comprehensive Study on Learning-Based PE Malware Family Classification Methods

A Comprehensive Study on Learning-Based PE Malware Family Classification Methods Datasets Because of copyright issues, both the MalwareBazaar dataset

8 Oct 21, 2022
Statistical and Algorithmic Investing Strategies for Everyone

Eiten - Algorithmic Investing Strategies for Everyone Eiten is an open source toolkit by Tradytics that implements various statistical and algorithmic

Tradytics 2.5k Jan 02, 2023
Dirty Pixels: Towards End-to-End Image Processing and Perception

Dirty Pixels: Towards End-to-End Image Processing and Perception This repository contains the code for the paper Dirty Pixels: Towards End-to-End Imag

50 Nov 18, 2022
Image super-resolution (SR) is a fast-moving field with novel architectures attracting the spotlight

Revisiting RCAN: Improved Training for Image Super-Resolution Introduction Image super-resolution (SR) is a fast-moving field with novel architectures

Zudi Lin 76 Dec 01, 2022
Preprossing-loan-data-with-NumPy - In this project, I have cleaned and pre-processed the loan data that belongs to an affiliate bank based in the United States.

Preprossing-loan-data-with-NumPy In this project, I have cleaned and pre-processed the loan data that belongs to an affiliate bank based in the United

Dhawal Chitnavis 2 Jan 03, 2022
Lecture materials for Cornell CS5785 Applied Machine Learning (Fall 2021)

Applied Machine Learning (Cornell CS5785, Fall 2021) This repo contains executable course notes and slides for the Applied ML course at Cornell and Co

Volodymyr Kuleshov 103 Dec 31, 2022
Contrastive Learning for Many-to-many Multilingual Neural Machine Translation(mCOLT/mRASP2), ACL2021

Contrastive Learning for Many-to-many Multilingual Neural Machine Translation(mCOLT/mRASP2), ACL2021 The code for training mCOLT/mRASP2, a multilingua

104 Jan 01, 2023
PyTorch implementation of CVPR 2020 paper (Reference-Based Sketch Image Colorization using Augmented-Self Reference and Dense Semantic Correspondence) and pre-trained model on ImageNet dataset

Reference-Based-Sketch-Image-Colorization-ImageNet This is a PyTorch implementation of CVPR 2020 paper (Reference-Based Sketch Image Colorization usin

Yuzhi ZHAO 11 Jul 28, 2022