Gesture Volume Control Using OpenCV and MediaPipe

Overview

Gesture Volume Control Using OpenCV and MediaPipe

output

This Project uses OpenCV and MediaPipe to Control system volume

💾 REQUIREMENTS

  • opencv-python
  • mediapipe
  • comtypes
  • numpy
  • pycaw
pip install -r requirements.txt

MEDIAPIPE

mediapipeLogo

MediaPipe offers open source cross-platform, customizable ML solutions for live and streaming media.

Hand Landmark Model

After the palm detection over the whole image our subsequent hand landmark model performs precise keypoint localization of 21 3D hand-knuckle coordinates inside the detected hand regions via regression, that is direct coordinate prediction. The model learns a consistent internal hand pose representation and is robust even to partially visible hands and self-occlusions.

To obtain ground truth data, we have manually annotated ~30K real-world images with 21 3D coordinates, as shown below (we take Z-value from image depth map, if it exists per corresponding coordinate). To better cover the possible hand poses and provide additional supervision on the nature of hand geometry, we also render a high-quality synthetic hand model over various backgrounds and map it to the corresponding 3D coordinates.

Solution APIs

Configuration Options

Naming style and availability may differ slightly across platforms/languages.

  • STATIC_IMAGE_MODE
    If set to false, the solution treats the input images as a video stream. It will try to detect hands in the first input images, and upon a successful detection further localizes the hand landmarks. In subsequent images, once all max_num_hands hands are detected and the corresponding hand landmarks are localized, it simply tracks those landmarks without invoking another detection until it loses track of any of the hands. This reduces latency and is ideal for processing video frames. If set to true, hand detection runs on every input image, ideal for processing a batch of static, possibly unrelated, images. Default to false.

  • MAX_NUM_HANDS
    Maximum number of hands to detect. Default to 2.

  • MODEL_COMPLEXITY
    Complexity of the hand landmark model: 0 or 1. Landmark accuracy as well as inference latency generally go up with the model complexity. Default to 1.

  • MIN_DETECTION_CONFIDENCE
    Minimum confidence value ([0.0, 1.0]) from the hand detection model for the detection to be considered successful. Default to 0.5.

  • MIN_TRACKING_CONFIDENCE:
    Minimum confidence value ([0.0, 1.0]) from the landmark-tracking model for the hand landmarks to be considered tracked successfully, or otherwise hand detection will be invoked automatically on the next input image. Setting it to a higher value can increase robustness of the solution, at the expense of a higher latency. Ignored if static_image_mode is true, where hand detection simply runs on every image. Default to 0.5.


Source: MediaPipe Hands Solutions

mediapipeLogo mediapipeLogo

📝 CODE EXPLANATION

Importing Libraries

import cv2
import mediapipe as mp
import math
import numpy as np
from ctypes import cast, POINTER
from comtypes import CLSCTX_ALL
from pycaw.pycaw import AudioUtilities, IAudioEndpointVolume

Solution APIs

mp_drawing = mp.solutions.drawing_utils
mp_drawing_styles = mp.solutions.drawing_styles
mp_hands = mp.solutions.hands

Volume Control Library Usage

devices = AudioUtilities.GetSpeakers()
interface = devices.Activate(IAudioEndpointVolume._iid_, CLSCTX_ALL, None)
volume = cast(interface, POINTER(IAudioEndpointVolume))

Getting Volume Range using volume.GetVolumeRange() Method

volRange = volume.GetVolumeRange()
minVol , maxVol , volBar, volPer= volRange[0] , volRange[1], 400, 0

Setting up webCam using OpenCV

wCam, hCam = 640, 480
cam = cv2.VideoCapture(0)
cam.set(3,wCam)
cam.set(4,hCam)

Using MediaPipe Hand Landmark Model for identifying Hands

with mp_hands.Hands(
    model_complexity=0,
    min_detection_confidence=0.5,
    min_tracking_confidence=0.5) as hands:

  while cam.isOpened():
    success, image = cam.read()

    image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
    results = hands.process(image)
    image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
    if results.multi_hand_landmarks:
      for hand_landmarks in results.multi_hand_landmarks:
        mp_drawing.draw_landmarks(
            image,
            hand_landmarks,
            mp_hands.HAND_CONNECTIONS,
            mp_drawing_styles.get_default_hand_landmarks_style(),
            mp_drawing_styles.get_default_hand_connections_style()
            )

Using multi_hand_landmarks method for Finding postion of Hand landmarks

lmList = []
    if results.multi_hand_landmarks:
      myHand = results.multi_hand_landmarks[0]
      for id, lm in enumerate(myHand.landmark):
        h, w, c = image.shape
        cx, cy = int(lm.x * w), int(lm.y * h)
        lmList.append([id, cx, cy])    

Assigning variables for Thumb and Index finger position

if len(lmList) != 0:
      x1, y1 = lmList[4][1], lmList[4][2]
      x2, y2 = lmList[8][1], lmList[8][2]

Marking Thumb and Index finger using cv2.circle() and Drawing a line between them using cv2.line()

cv2.circle(image, (x1,y1),15,(255,255,255))  
cv2.circle(image, (x2,y2),15,(255,255,255))  
cv2.line(image,(x1,y1),(x2,y2),(0,255,0),3)
length = math.hypot(x2-x1,y2-y1)
if length < 50:
    cv2.line(image,(x1,y1),(x2,y2),(0,0,255),3)

Converting Length range into Volume range using numpy.interp()

vol = np.interp(length, [50, 220], [minVol, maxVol])

Changing System Volume using volume.SetMasterVolumeLevel() method

volume.SetMasterVolumeLevel(vol, None)
volBar = np.interp(length, [50, 220], [400, 150])
volPer = np.interp(length, [50, 220], [0, 100])

Drawing Volume Bar using cv2.rectangle() method

cv2.rectangle(image, (50, 150), (85, 400), (0, 0, 0), 3)
cv2.rectangle(image, (50, int(volBar)), (85, 400), (0, 0, 0), cv2.FILLED)
cv2.putText(image, f'{int(volPer)} %', (40, 450), cv2.FONT_HERSHEY_COMPLEX,
        1, (0, 0, 0), 3)}

Displaying Output using cv2.imshow method

cv2.imshow('handDetector', image) 
    if cv2.waitKey(1) & 0xFF == ord('q'):
      break

Closing webCam

cam.release()

📬 Contact

If you want to contact me, you can reach me through below handles.

@prrthamm   Pratham Bhatnagar

Owner
Pratham Bhatnagar
Computer Science Engineering student at SRM University. || Blockchain || ML Enthusiast || Open Source || Team member @srm-kzilla || Associate @NextTechLab
Pratham Bhatnagar
An Api for Emotion recognition.

PLAYEMO Playemo was built from the ground-up with Flask, a python tool that makes it easy for developers to build APIs. Use Cases Is Python your langu

greek geek 2 Jul 16, 2022
PyBullet CartPole and Quadrotor environments—with CasADi symbolic a priori dynamics—for learning-based control and reinforcement learning

safe-control-gym Physics-based CartPole and Quadrotor Gym environments (using PyBullet) with symbolic a priori dynamics (using CasADi) for learning-ba

Dynamic Systems Lab 300 Dec 28, 2022
ALBERT-pytorch-implementation - ALBERT pytorch implementation

ALBERT-pytorch-implementation developing... 모델의 개념이해를 돕기 위한 구현물로 현재 변수명을 상세히 적었고

BG Kim 3 Oct 06, 2022
Event-forecasting - Event Forecasting Algorithms With Python

event-forecasting Event Forecasting Algorithms Theory Correlating events in comp

Intellia ICT 4 Feb 15, 2022
Official implementation of Self-supervised Graph Attention Networks (SuperGAT), ICLR 2021.

SuperGAT Official implementation of Self-supervised Graph Attention Networks (SuperGAT). This model is presented at How to Find Your Friendly Neighbor

Dongkwan Kim 127 Dec 28, 2022
Code for the prototype tool in our paper "CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning".

CoProtector Code for the prototype tool in our paper "CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning".

Zhensu Sun 1 Oct 26, 2021
City-Scale Multi-Camera Vehicle Tracking Guided by Crossroad Zones Code

City-Scale Multi-Camera Vehicle Tracking Guided by Crossroad Zones Requirements Python 3.8 or later with all requirements.txt dependencies installed,

88 Dec 12, 2022
[ICCV 2021] Official PyTorch implementation for Deep Relational Metric Learning.

Ranking Models in Unlabeled New Environments Prerequisites This code uses the following libraries Python 3.7 NumPy PyTorch 1.7.0 + torchivision 0.8.1

Borui Zhang 39 Dec 10, 2022
Human-Pose-and-Motion History

Human Pose and Motion Scientist Approach Eadweard Muybridge, The Galloping Horse Portfolio, 1887 Etienne-Jules Marey, Descent of Inclined Plane, Chron

Daito Manabe 47 Dec 16, 2022
Contrastive Learning with Non-Semantic Negatives

Contrastive Learning with Non-Semantic Negatives This repository is the official implementation of Robust Contrastive Learning Using Negative Samples

39 Jul 31, 2022
Hypersim: A Photorealistic Synthetic Dataset for Holistic Indoor Scene Understanding

The Hypersim Dataset For many fundamental scene understanding tasks, it is difficult or impossible to obtain per-pixel ground truth labels from real i

Apple 1.3k Jan 04, 2023
This project deals with the detection of skin lesions within the ISICs dataset using YOLOv3 Object Detection with Darknet.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. Skin Lesion detection using YOLO This project deal

Lalith Veerabhadrappa Badiger 1 Nov 22, 2021
Bu repo SAHI uygulamasını mantığını öğreniyoruz.

SAHI-Learn: SAHI'den Beraber Kodlamak İster Misiniz Herkese merhabalar ben Kadir Nar. SAHI kütüphanesine gönüllü geliştiriciyim. Bu repo SAHI kütüphan

Kadir Nar 11 Aug 22, 2022
Anagram Generator in Python

Anagrams Generator This is a program for computing multiword anagrams. It makes no effort to come up with sentences that make sense; it only finds ana

Day Fundora 5 Nov 17, 2022
Manifold Alignment for Semantically Aligned Style Transfer

Manifold Alignment for Semantically Aligned Style Transfer [Paper] Getting Started MAST has been tested on CentOS 7.6 with python = 3.6. It supports

35 Nov 14, 2022
Ros2-voiceroid2 - ROS2 wrapper package of VOICEROID2

ros2_voiceroid2 ROS2 wrapper package of VOICEROID2 Windows Only Installation Ins

Nkyoku 1 Jan 23, 2022
Flaxformer: transformer architectures in JAX/Flax

Flaxformer is a transformer library for primarily NLP and multimodal research at Google.

Google 116 Jan 05, 2023
A novel method to tune language models. Codes and datasets for paper ``GPT understands, too''.

P-tuning A novel method to tune language models. Codes and datasets for paper ``GPT understands, too''. How to use our code We have released the code

THUDM 562 Dec 27, 2022
This is the official Pytorch implementation of "Lung Segmentation from Chest X-rays using Variational Data Imputation", Raghavendra Selvan et al. 2020

README This is the official Pytorch implementation of "Lung Segmentation from Chest X-rays using Variational Data Imputation", Raghavendra Selvan et a

Raghav 42 Dec 15, 2022
A Light CNN for Deep Face Representation with Noisy Labels

A Light CNN for Deep Face Representation with Noisy Labels Citation If you use our models, please cite the following paper: @article{wulight, title=

Alfred Xiang Wu 715 Nov 05, 2022