CTF Challenge for CSAW Finals 2021

Overview

Terminal Velocity

Misc CTF Challenge for CSAW Finals 2021

This is a challenge I've had in mind for almost 15 years and never got around to building until now. It (ab)uses a number of terminal escape codes to trigger both legitimate and scary and potentially dangerous terminal features, many of which are enabled by default in modern terminals! While a number of more serious exploits were patched in terminals since this original idea (it used to be trivial to kill many terminals with such escapes as "move cursor left 2^32 times or other similar ridiculous instructions), but most of the remaining shenanigans are merely abusing "legitimate" features that maybe are undesirable when simply viewing a text file or connecting to a network socket.

It's worth noting that because this service uses the usual netcat connection from clients, it will be line-buffered. This prevents some more egregious abuse of terminal escapes and requires some slight trickery to receive the return escape codes as hidden parts of existing responses during the various "press enter to continue" or similar prompts. Using something like telnet or ssh would fix this and allow for even more dangerous terminal manipulations.

Part of the goal of this challenge is to encourage people to be a bit more careful even when taking actions they might otherwise consider benign. Text should be considered harmful.

Deploying / Running

$ docker build -t terminal .
$ docker run -it -p 3535:3535 terminal

Or just run python3 service.py and connect to your local machine on port 3535.

Solutions

Two play-testers provided (partial) solutions which needs some tweaks for the final updates. This writeup covers the main tasks:

Level 0

When you first connect to the server you simply see a password (Level 0 Is Really Easy) which when pasted is indeed, correct.

The only tricky thing is if you try to sniff the connection or use a non-terminal to access it, you'll see that the password is originally something else that is overwritten.

Screen Check

After solving level 0, you will be asked "What is the proper screen size"? Some people may simply know the default terminal size is 80x24 and adjust accordingly, but if not, the server helpfully tells you whether your terminal was too big or too small after verifying that it can read your screen dimensions. If you're not running a real terminal, you'll need to learn to fake the correct response.

Level 1

Level one simply prints the password out in a black text on a black background. You can simply copy/paste it from the terminal but if you try to view it from the raw network traffic you will see that it is interspersed with unrelated escape codes that you have to filter out.

Correct pass: G1V3M3TH3N3XTL3V3L

Feature Check: Iconify

The next check will attempt to icnoify your terminal and query the status of the terminal (it also has the side effect of querying a user's iTerm current profile name). Correct approaches to solving this usually involve analyzing the query string that is sent and finding what is being looked up. Note that some VT100 references will give misleading answers and the oracle should always be consulted (if people get stuck I'd give this as a hint out since it's a better reference. All references are painfully hard to search though which is hilarious.)

Note: if you don't have a terminal capable of following this live (Terminal.app is the only one I know that does it all correctly) and you don't want to write a terminal emulator/manual interaction script (definitely the right approach for what's coming next), then you can work around it by just pressing backspace twice and entering 2t before pressing enter.

Level 2

Level two is similar except the line of correct text is erased after rendered. An emulator that simulates specific character drawing will be able to recover the text, or a filter that blocks the "erase" escape codes (though there are several used) can work here.

Correct password: HalfwayDone

Level 3

Level three is pretty nasty (the user is warned though!)

It will attempt to do all sorts of nasty things to their terminal including printing locking the prompt, crashing it with bogus operations. One printer accidentally spewed out paper and one Windows machine blue screened during the testing of these features, so this can be tough! (The printer bug was fixed with all the aforementioned iTerm detection above ). By this point users should be strongly considering not directly interacting with the port but using pwntools with heavy filtering or some other method. (Fun fact, Windows terminal actually looks super robust against these sorts of shenanigans and the developers even built an entire fuzzing harness that really needs to be run against all other major browsers which still have many bugs).

Anyway, for players who have been building a very simply terminal emulator to this point, just having the ability to emulate three different cases of move and draw commands will let them re-create the correct text for this level.

Correct password: BobTheBuilder

Level 4

The final level brings image formats! Yup, there are actually many different valid forms of images that can be displayed in terminals. Though, if I've done my job correctly, the previous level will have broken or rendered useless most of the terminals that otherwise could just show the images directly.

The three images that are displayed are:

  1. Simple base64 encoded file in iTerm image format
  2. A sixel and
  3. A Tektronix image

There are several different approaches/tools to solving the last two images. Just using a compatible terminal and separately cat'ing the file after extracting them from the session is sufficient.

xTerm has the only support for the final Tektronix image format I have found. When assembled, the images reveal the final passcode: PINEY_FLATS_TN_USA a random city with no meaning at all behind it.

Entering the final password reveals the flag for the challenge!

Hopefully people have a lot more respect about what their terminals are capable of after working on this challenge and maybe even take more care when randomly connecting to servers on the internet.

Owner
Jordan
Jordan
PyTorch Implementation of Google Brain's WaveGrad 2: Iterative Refinement for Text-to-Speech Synthesis

WaveGrad2 - PyTorch Implementation PyTorch Implementation of Google Brain's WaveGrad 2: Iterative Refinement for Text-to-Speech Synthesis. Status (202

Keon Lee 59 Dec 06, 2022
Predicting 10 different clothing types using Xception pre-trained model.

Predicting-Clothing-Types Predicting 10 different clothing types using Xception pre-trained model from Keras library. It is reimplemented version from

AbdAssalam Ahmad 3 Dec 29, 2021
PaddleBoBo是基于PaddlePaddle和PaddleSpeech、PaddleGAN等开发套件的虚拟主播快速生成项目

PaddleBoBo - 元宇宙时代,你也可以动手做一个虚拟主播。 PaddleBoBo是基于飞桨PaddlePaddle深度学习框架和PaddleSpeech、PaddleGAN等开发套件的虚拟主播快速生成项目。PaddleBoBo致力于简单高效、可复用性强,只需要一张带人像的图片和一段文字,就能

502 Jan 08, 2023
This repository focus on Image Captioning & Video Captioning & Seq-to-Seq Learning & NLP

Awesome-Visual-Captioning Table of Contents ACL-2021 CVPR-2021 AAAI-2021 ACMMM-2020 NeurIPS-2020 ECCV-2020 CVPR-2020 ACL-2020 AAAI-2020 ACL-2019 NeurI

Ziqi Zhang 362 Jan 03, 2023
Encoding Causal Macrovariables

Encoding Causal Macrovariables Data Natural climate data ('El Nino') Self-generated data ('Simulated') Experiments Detecting macrovariables through th

Benedikt Höltgen 3 Jul 31, 2022
tensorflow implementation of 'YOLO : Real-Time Object Detection'

YOLO_tensorflow (Version 0.3, Last updated :2017.02.21) 1.Introduction This is tensorflow implementation of the YOLO:Real-Time Object Detection It can

Jinyoung Choi 1.7k Nov 21, 2022
A PyTorch implementation of PointRend: Image Segmentation as Rendering

PointRend A PyTorch implementation of PointRend: Image Segmentation as Rendering [arxiv] [Official Implementation: Detectron2] This repo for Only Sema

AhnDW 336 Dec 26, 2022
This is a repository for a semantic segmentation inference API using the OpenVINO toolkit

BMW-IntelOpenVINO-Segmentation-Inference-API This is a repository for a semantic segmentation inference API using the OpenVINO toolkit. It's supported

BMW TechOffice MUNICH 34 Nov 24, 2022
labelpix is a graphical image labeling interface for drawing bounding boxes

Welcome to labelpix 👋 labelpix is a graphical image labeling interface for drawing bounding boxes. 🏠 Homepage Install pip install -r requirements.tx

schissmantics 26 May 24, 2022
CSAW-M: An Ordinal Classification Dataset for Benchmarking Mammographic Masking of Cancer

CSAW-M This repository contains code for CSAW-M: An Ordinal Classification Dataset for Benchmarking Mammographic Masking of Cancer. Source code for tr

Yue Liu 7 Oct 11, 2022
Implementation for our ICCV2021 paper: Internal Video Inpainting by Implicit Long-range Propagation

Implicit Internal Video Inpainting Implementation for our ICCV2021 paper: Internal Video Inpainting by Implicit Long-range Propagation paper | project

202 Dec 30, 2022
MRQy is a quality assurance and checking tool for quantitative assessment of magnetic resonance imaging (MRI) data.

Front-end View Backend View Table of Contents Description Prerequisites Running Basic Information Measurements User Interface Feedback and usage Descr

Center for Computational Imaging and Personalized Diagnostics 58 Dec 02, 2022
PyTorch implementation for the visual prior component (i.e. perception module) of the Visually Grounded Physics Learner [Li et al., 2020].

VGPL-Visual-Prior PyTorch implementation for the visual prior component (i.e. perception module) of the Visually Grounded Physics Learner (VGPL). Give

Toru 8 Dec 29, 2022
Two-stage CenterNet

Probabilistic two-stage detection Two-stage object detectors that use class-agnostic one-stage detectors as the proposal network. Probabilistic two-st

Xingyi Zhou 1.1k Jan 03, 2023
Temporal Dynamic Convolutional Neural Network for Text-Independent Speaker Verification and Phonemetic Analysis

TDY-CNN for Text-Independent Speaker Verification Official implementation of Temporal Dynamic Convolutional Neural Network for Text-Independent Speake

Seong-Hu Kim 16 Oct 17, 2022
Official implementation of MSR-GCN (ICCV 2021 paper)

MSR-GCN Official implementation of MSR-GCN: Multi-Scale Residual Graph Convolution Networks for Human Motion Prediction (ICCV 2021 paper) [Paper] [Sup

LevonDang 42 Nov 07, 2022
LinkNet - This repository contains our Torch7 implementation of the network developed by us at e-Lab.

LinkNet This repository contains our Torch7 implementation of the network developed by us at e-Lab. You can go to our blogpost or read the article Lin

e-Lab 158 Nov 11, 2022
PaddleRobotics is an open-source algorithm library for robots based on Paddle, including open-source parts such as human-robot interaction, complex motion control, environment perception, SLAM positioning, and navigation.

简体中文 | English PaddleRobotics paddleRobotics是基于paddle的机器人开源算法库集,包括人机交互、复杂运动控制、环境感知、slam定位导航等开源算法部分。 人机交互 主动多模交互技术TFVT-HRI 主动多模交互技术是通过视觉、语音、触摸传感器等输入机器人

185 Dec 26, 2022
Code for the paper "On the Power of Edge Independent Graph Models"

Edge Independent Graph Models Code for the paper: "On the Power of Edge Independent Graph Models" Sudhanshu Chanpuriya, Cameron Musco, Konstantinos So

Konstantinos Sotiropoulos 0 Oct 26, 2021
Deep Learning Visuals contains 215 unique images divided in 23 categories

Deep Learning Visuals contains 215 unique images divided in 23 categories (some images may appear in more than one category). All the images were originally published in my book "Deep Learning with P

Daniel Voigt Godoy 1.3k Dec 28, 2022