Tutorial in Python targeted at Epidemiologists. Will discuss the basics of analysis in Python 3

Overview

Python-for-Epidemiologists

Join the chat at https://gitter.im/zEpid/community DOI

This repository is an introduction to epidemiology analyses in Python. Additionally, the tutorials for my library zEpid are hosted here. For more information on zEpid, see GitHub or ReadTheDocs.

The directory of this guide is

  1. Python Basics
  2. Basics of pandas (data management library)
  3. Epidemiology analyses in Python
    1. Basics
    2. Missing data
    3. Causal inference
      1. Time-fixed treatments
      2. Time-varying treatments
    4. Sensitivity analyses

Required packages for tutorial

To complete the tutorial, user must have the following packages installed: numpy, pandas, zepid, matplotlib, statsmodels, lifelines, and sklearn

IDE (Integrated Development Environment)

No IDE is required to complete the tutorial. All files are available in ipynb also known as jupyter notebooks. Code can be either downloaded or copied from the notebooks.

Here are some IDEs I have used in the past (and what I believe to be their advantages and disadvantages

Rodeo

This is the IDE I used for a long time. It is set up like RStudio

Advantages:

Basically RStudio but for Python, decent interface, easy to run line-by-line, easy to visualize plots (although it encourage bad habits)

Disadvantages:

Does not have all the features of RStudio (will delete changes if closed without saving), sucks up a lot of memory, sometimes the auto-complete would stop working if I hit more than 300+ lines of code, the environment tab is not great (don't expect it to open anything like RStudio)

Aside: their website has great tutorials how to run some basic stuff in Python if you are new to analysis in Python https://rodeo.yhat.com/

jupyter notebooks

Designed to be like a lab notebook, or like R markdown. Supports a pseudo-line-by-line concept Good for writing, since it allows for MarkDown. While I know a lot of people like jupyter, I only really use it for examples of code, not my personal programming. I never liked how it had to open via a Web Browser. I would rather have it be separate program. However, all guides were made using this IDE

PyCharm

This is the IDE I currently use

Advantages:

Easily set up virtual environments, interacts natively with Git, supports different file formats with plug-ins (e.g. .md), enforces certain coding conventions, better debug code features, organization of files under the project tab are convenient

Disadvantages:

Not great for running line-by-line code (it can do it, just not as elegantly), little more hardcore (I wouldn't really consider it a beginner's IDE. It requires some knowledge of set-up of Python)

IDLE

Ships with the basic Python 3.x installation. It is very basic and does not support line-by-line. Wouldn't recommend unless you are just starting with Python and don't want to commit to an IDE yet

Spyder

Ships with conda. Not bad but I didn't use it that much (I couldn't get the hang of it). Similarly it is an RStudio copy. Can't say too much since I haven't used it extensively

Basic Introduction to Python

If you have never used Python before, I have created some introductory materials to Python and the data management library I use, pandas. These are basic guides, but they also point to other resources. Please READ ALL OF THE BELOW BEFORE PROCEEDING.

Installing Python

To install, Python 3.x, we can download it directly from: https://www.python.org/downloads/

The installer provides an option to add Python3 to PATH, it is highly recommended you do this, since it allows you to avoid having to do it manually

Open Command Prompt / Terminal. When opened, type python and this should open Python in the same window. From here, you can quit by typing 'quit()' or closing the window. If this does NOT work, make sure your environmental variable was created properly

Installing Python Packages

Packages are what stores Python functions that we will use. These packages are contributed by various members of the community (including me)) and there is a wide array. To be able to download packages, we need to make sure we have an environmental variable created for python. We will discuss how to install packages

Python 3.x conveniently comes with a package manager. Basically it stores all the packages and we can use it to download new ones or update already downloaded ones.

To download a new package: Open Command Prompt/Terminal and use the following code (we will be installing pandas)

pip install pandas

To update a Python package, type the following command into Command Prompt. For example, we will update our pandas package

pip install pandas --upgrade

That concludes the basics. Please review parts 1 and 2 of the tutorials next

Comments
  • Cochran-Mantel-Haenszel

    Cochran-Mantel-Haenszel

    Thank you @pzivich for this amazing resource. Having the Hernan/Robbins causal model code in python is super helpful... g-estimation!

    I have a request... do you have a Cochran-Mantel-Haenszel script? If you get the chance, please, it would be useful to us to have in this repo. Thank you in advance!

    opened by opioiddatalab 2
  • Slight changes in Incidence Rate Ratio

    Slight changes in Incidence Rate Ratio

    Incidence Ratio Rate Paragraph

    • Fixed repetition
    • T1 & T0 are defined the same way. I believe that T0 is the person-time contributed by people NOT treated with ART
    opened by jaimiles23 0
  • Updates for v0.8.0

    Updates for v0.8.0

    Checklist for various notebooks to update with v0.8.0 release (hasn't released yet)

    • [x] IPTW update. Lots of major changes, so notebook needs to be completely overhauled

    • [x] Demonstrate new diagnostic functions for IPTW, g-formula, AIPW, TMLE

    • [x] Demonstrate g-bound argument

    • [x] Remove TMLE machine learning custom models. This is being removed in favor of cross-fitting. Can leave how to apply for now, but add the warning and mention will be cut in v0.9.0

    opened by pzivich 0
  • Notebooks not rendering in GitHub

    Notebooks not rendering in GitHub

    Sometimes GitHub has trouble rendering the notebooks. AFAIK the rendering system is behind the scenes at GitHub. Others have this same problem across repos and it sometimes occurs to me as well.

    If the notebook won't render in GitHub, you can copy the URL to the notebook you want to view and use the following site to view the notebook: https://nbviewer.jupyter.org/

    opened by pzivich 0
  • Replicate

    Replicate "Causal Inference"

    Issue to track progress on implementation of Hernan and Robins "Causal Inference" chapters

    • [x] Chapter 12: Inverse probability weights

    • [x] Chapter 13: Parametric g-formula

    • [x] Chapter 14: G-estimation of structural nested models

    • [x] ~Chapter 16: G-estimation for IV analysis~

    • [ ] Chapter 17: Causal survival analysis

    • [ ] Part III: Time-varying treatments

    ~G-estimation is not currently implemented. I will need to implement these before chapter 14 can be done.~

    Currently there are no plans to replicate Chapter 15 (propensity scores and regression) or Chapter 16 (instrumental variables) since the first method does not require zEpid and I am unfamiliar with the second. Maybe instrumental variables will be added in the future?

    For Chapter 16, I am considering demonstrating the usage of g-estimation instead of two-stage least-squares. Specifically, using the same data as done in Chapter 16 but following Technical Point 16.3

    enhancement 
    opened by pzivich 0
  • Tutorials

    Tutorials

    On the website, create quick tutorials demonstrating each of the implemented estimators, descriptions of how they work, and why you might want to use them. Might be more digestible than the current docs (also better justify why to choose one over the other)

    Reference to base on https://lifelines.readthedocs.io/en/latest/jupyter_notebooks/Proportional%20hazard%20assumption.html https://github.com/CamDavidsonPilon/lifelines/blob/master/docs/jupyter_notebooks/Proportional%20hazard%20assumption.ipynb

    TODO

    • [x] Basic measures

    • [x] splines

    • [x] IPTW: time-fixed treatment

    • [ ] IPTW: stochastic treatment

    • [ ] IPTW: time-varying treatment

    • [x] IPCW

    • [x] IPMW: single variable

    • [ ] IPMW: monotone

    • [ ] IPMW: nonmonotone (to add after implemented)

    • [x] G-formula: time-fixed binary treatment, binary outcome

    • [x] G-formula: time-fixed categorical treatment, binary outcome

    • [ ] G-formula: time-fixed continuous treatment, binary outcome (to add after implemented)

    • [x] G-formula: time-fixed binary treatment, continuous outcome

    • [x] G-formula: Monte Carlo

    • [x] G-formula: Iterative Conditional

    • [x] G-estimation of SNM

    • [x] AIPTW

    • [ ] AIPMW

    • [x] TMLE

    • [x] TMLE: stochastic treatment

    • [ ] LTMLE (to add after implemented)

    • [x] Quantitative bias analysis

    • [x] Functional form assessment

    • [x] Generalizability

    • [ ] Transportability (IPSW, g-transport, AIPSW)

    • [x] Monte Carlo g-formula by-hand (helps to explain underlying process)

    opened by pzivich 1
Releases(v0.8.0)
Owner
Paul Zivich
Epidemiology post-doc working in epidemiologic methods and infectious diseases.
Paul Zivich
Sequential GCN for Active Learning

Sequential GCN for Active Learning Please cite if using the code: Link to paper. Requirements: python 3.6+ torch 1.0+ pip libraries: tqdm, sklearn, sc

45 Dec 26, 2022
Static Features Classifier - A static features classifier for Point-Could clusters using an Attention-RNN model

Static Features Classifier This is a static features classifier for Point-Could

ABDALKARIM MOHTASIB 1 Jan 25, 2022
DeepStochlog Package For Python

DeepStochLog Installation Installing SWI Prolog DeepStochLog requires SWI Prolog to run. Run the following commands to install: sudo apt-add-repositor

KU Leuven Machine Learning Research Group 17 Dec 23, 2022
Code for paper PairRE: Knowledge Graph Embeddings via Paired Relation Vectors.

PairRE Code for paper PairRE: Knowledge Graph Embeddings via Paired Relation Vectors. This implementation of PairRE for Open Graph Benchmak datasets (

Alipay 65 Dec 19, 2022
GT China coal model

GT China coal model The full version of a China coal transport model with a very high spatial reslution. What it does The code works in a few steps: T

0 Dec 13, 2021
Readings for "A Unified View of Relational Deep Learning for Polypharmacy Side Effect, Combination Therapy, and Drug-Drug Interaction Prediction."

Polypharmacy - DDI - Synergy Survey The Survey Paper This repository accompanies our survey paper A Unified View of Relational Deep Learning for Polyp

AstraZeneca 79 Jan 05, 2023
Citation Intent Classification in scientific papers using the Scicite dataset an Pytorch

Citation Intent Classification Table of Contents About the Project Built With Installation Usage Acknowledgments About The Project Citation Intent Cla

Federico Nocentini 4 Mar 04, 2022
(CVPR 2021) PAConv: Position Adaptive Convolution with Dynamic Kernel Assembling on Point Clouds

PAConv: Position Adaptive Convolution with Dynamic Kernel Assembling on Point Clouds by Mutian Xu*, Runyu Ding*, Hengshuang Zhao, and Xiaojuan Qi. Int

CVMI Lab 228 Dec 25, 2022
Py-faster-rcnn - Faster R-CNN (Python implementation)

py-faster-rcnn has been deprecated. Please see Detectron, which includes an implementation of Mask R-CNN. Disclaimer The official Faster R-CNN code (w

Ross Girshick 7.8k Jan 03, 2023
FAST-RIR: FAST NEURAL DIFFUSE ROOM IMPULSE RESPONSE GENERATOR

This is the official implementation of our neural-network-based fast diffuse room impulse response generator (FAST-RIR) for generating room impulse responses (RIRs) for a given acoustic environment.

Anton Jeran Ratnarajah 89 Dec 22, 2022
Python code to fuse multiple RGB-D images into a TSDF voxel volume.

Volumetric TSDF Fusion of RGB-D Images in Python This is a lightweight python script that fuses multiple registered color and depth images into a proj

Andy Zeng 845 Jan 03, 2023
This repository contains an overview of important follow-up works based on the original Vision Transformer (ViT) by Google.

This repository contains an overview of important follow-up works based on the original Vision Transformer (ViT) by Google.

75 Dec 02, 2022
Film review classification

Film review classification Решение задачи классификации отзывов на фильмы на положительные и отрицательные с помощью рекуррентных нейронных сетей 1. З

Nikita Dukin 3 Jan 21, 2022
(NeurIPS '21 Spotlight) IQ-Learn: Inverse Q-Learning for Imitation

Inverse Q-Learning (IQ-Learn) Official code base for IQ-Learn: Inverse soft-Q Learning for Imitation, NeurIPS '21 Spotlight IQ-Learn is an easy-to-use

Divyansh Garg 102 Dec 20, 2022
PyContinual (An Easy and Extendible Framework for Continual Learning)

PyContinual (An Easy and Extendible Framework for Continual Learning) Easy to Use You can sumply change the baseline, backbone and task, and then read

176 Jan 05, 2023
An unreferenced image captioning metric (ACL-21)

UMIC This repository provides an unferenced image captioning metric from our ACL 2021 paper UMIC: An Unreferenced Metric for Image Captioning via Cont

hwanheelee 14 Nov 20, 2022
Denoising Diffusion Probabilistic Models

Denoising Diffusion Probabilistic Models Jonathan Ho, Ajay Jain, Pieter Abbeel Paper: https://arxiv.org/abs/2006.11239 Website: https://hojonathanho.g

Jonathan Ho 1.5k Jan 08, 2023
Histocartography is a framework bringing together AI and Digital Pathology

Documentation | Paper Welcome to the histocartography repository! histocartography is a python-based library designed to facilitate the development of

155 Nov 23, 2022
Robust, modular and efficient implementation of advanced Hamiltonian Monte Carlo algorithms

AdvancedHMC.jl AdvancedHMC.jl provides a robust, modular and efficient implementation of advanced HMC algorithms. An illustrative example for Advanced

The Turing Language 167 Jan 01, 2023
Building a real-time environment using webcam frame division in OpenCV and classify cropped images using a fine-tuned vision transformers on hybryd datasets samples for facial emotion recognition.

Visual Transformer for Facial Emotion Recognition (FER) This project has the aim to build an efficient Visual Transformer for the Facial Emotion Recog

Mario Sessa 8 Dec 12, 2022