Tutorial in Python targeted at Epidemiologists. Will discuss the basics of analysis in Python 3

Overview

Python-for-Epidemiologists

Join the chat at https://gitter.im/zEpid/community DOI

This repository is an introduction to epidemiology analyses in Python. Additionally, the tutorials for my library zEpid are hosted here. For more information on zEpid, see GitHub or ReadTheDocs.

The directory of this guide is

  1. Python Basics
  2. Basics of pandas (data management library)
  3. Epidemiology analyses in Python
    1. Basics
    2. Missing data
    3. Causal inference
      1. Time-fixed treatments
      2. Time-varying treatments
    4. Sensitivity analyses

Required packages for tutorial

To complete the tutorial, user must have the following packages installed: numpy, pandas, zepid, matplotlib, statsmodels, lifelines, and sklearn

IDE (Integrated Development Environment)

No IDE is required to complete the tutorial. All files are available in ipynb also known as jupyter notebooks. Code can be either downloaded or copied from the notebooks.

Here are some IDEs I have used in the past (and what I believe to be their advantages and disadvantages

Rodeo

This is the IDE I used for a long time. It is set up like RStudio

Advantages:

Basically RStudio but for Python, decent interface, easy to run line-by-line, easy to visualize plots (although it encourage bad habits)

Disadvantages:

Does not have all the features of RStudio (will delete changes if closed without saving), sucks up a lot of memory, sometimes the auto-complete would stop working if I hit more than 300+ lines of code, the environment tab is not great (don't expect it to open anything like RStudio)

Aside: their website has great tutorials how to run some basic stuff in Python if you are new to analysis in Python https://rodeo.yhat.com/

jupyter notebooks

Designed to be like a lab notebook, or like R markdown. Supports a pseudo-line-by-line concept Good for writing, since it allows for MarkDown. While I know a lot of people like jupyter, I only really use it for examples of code, not my personal programming. I never liked how it had to open via a Web Browser. I would rather have it be separate program. However, all guides were made using this IDE

PyCharm

This is the IDE I currently use

Advantages:

Easily set up virtual environments, interacts natively with Git, supports different file formats with plug-ins (e.g. .md), enforces certain coding conventions, better debug code features, organization of files under the project tab are convenient

Disadvantages:

Not great for running line-by-line code (it can do it, just not as elegantly), little more hardcore (I wouldn't really consider it a beginner's IDE. It requires some knowledge of set-up of Python)

IDLE

Ships with the basic Python 3.x installation. It is very basic and does not support line-by-line. Wouldn't recommend unless you are just starting with Python and don't want to commit to an IDE yet

Spyder

Ships with conda. Not bad but I didn't use it that much (I couldn't get the hang of it). Similarly it is an RStudio copy. Can't say too much since I haven't used it extensively

Basic Introduction to Python

If you have never used Python before, I have created some introductory materials to Python and the data management library I use, pandas. These are basic guides, but they also point to other resources. Please READ ALL OF THE BELOW BEFORE PROCEEDING.

Installing Python

To install, Python 3.x, we can download it directly from: https://www.python.org/downloads/

The installer provides an option to add Python3 to PATH, it is highly recommended you do this, since it allows you to avoid having to do it manually

Open Command Prompt / Terminal. When opened, type python and this should open Python in the same window. From here, you can quit by typing 'quit()' or closing the window. If this does NOT work, make sure your environmental variable was created properly

Installing Python Packages

Packages are what stores Python functions that we will use. These packages are contributed by various members of the community (including me)) and there is a wide array. To be able to download packages, we need to make sure we have an environmental variable created for python. We will discuss how to install packages

Python 3.x conveniently comes with a package manager. Basically it stores all the packages and we can use it to download new ones or update already downloaded ones.

To download a new package: Open Command Prompt/Terminal and use the following code (we will be installing pandas)

pip install pandas

To update a Python package, type the following command into Command Prompt. For example, we will update our pandas package

pip install pandas --upgrade

That concludes the basics. Please review parts 1 and 2 of the tutorials next

Comments
  • Cochran-Mantel-Haenszel

    Cochran-Mantel-Haenszel

    Thank you @pzivich for this amazing resource. Having the Hernan/Robbins causal model code in python is super helpful... g-estimation!

    I have a request... do you have a Cochran-Mantel-Haenszel script? If you get the chance, please, it would be useful to us to have in this repo. Thank you in advance!

    opened by opioiddatalab 2
  • Slight changes in Incidence Rate Ratio

    Slight changes in Incidence Rate Ratio

    Incidence Ratio Rate Paragraph

    • Fixed repetition
    • T1 & T0 are defined the same way. I believe that T0 is the person-time contributed by people NOT treated with ART
    opened by jaimiles23 0
  • Updates for v0.8.0

    Updates for v0.8.0

    Checklist for various notebooks to update with v0.8.0 release (hasn't released yet)

    • [x] IPTW update. Lots of major changes, so notebook needs to be completely overhauled

    • [x] Demonstrate new diagnostic functions for IPTW, g-formula, AIPW, TMLE

    • [x] Demonstrate g-bound argument

    • [x] Remove TMLE machine learning custom models. This is being removed in favor of cross-fitting. Can leave how to apply for now, but add the warning and mention will be cut in v0.9.0

    opened by pzivich 0
  • Notebooks not rendering in GitHub

    Notebooks not rendering in GitHub

    Sometimes GitHub has trouble rendering the notebooks. AFAIK the rendering system is behind the scenes at GitHub. Others have this same problem across repos and it sometimes occurs to me as well.

    If the notebook won't render in GitHub, you can copy the URL to the notebook you want to view and use the following site to view the notebook: https://nbviewer.jupyter.org/

    opened by pzivich 0
  • Replicate

    Replicate "Causal Inference"

    Issue to track progress on implementation of Hernan and Robins "Causal Inference" chapters

    • [x] Chapter 12: Inverse probability weights

    • [x] Chapter 13: Parametric g-formula

    • [x] Chapter 14: G-estimation of structural nested models

    • [x] ~Chapter 16: G-estimation for IV analysis~

    • [ ] Chapter 17: Causal survival analysis

    • [ ] Part III: Time-varying treatments

    ~G-estimation is not currently implemented. I will need to implement these before chapter 14 can be done.~

    Currently there are no plans to replicate Chapter 15 (propensity scores and regression) or Chapter 16 (instrumental variables) since the first method does not require zEpid and I am unfamiliar with the second. Maybe instrumental variables will be added in the future?

    For Chapter 16, I am considering demonstrating the usage of g-estimation instead of two-stage least-squares. Specifically, using the same data as done in Chapter 16 but following Technical Point 16.3

    enhancement 
    opened by pzivich 0
  • Tutorials

    Tutorials

    On the website, create quick tutorials demonstrating each of the implemented estimators, descriptions of how they work, and why you might want to use them. Might be more digestible than the current docs (also better justify why to choose one over the other)

    Reference to base on https://lifelines.readthedocs.io/en/latest/jupyter_notebooks/Proportional%20hazard%20assumption.html https://github.com/CamDavidsonPilon/lifelines/blob/master/docs/jupyter_notebooks/Proportional%20hazard%20assumption.ipynb

    TODO

    • [x] Basic measures

    • [x] splines

    • [x] IPTW: time-fixed treatment

    • [ ] IPTW: stochastic treatment

    • [ ] IPTW: time-varying treatment

    • [x] IPCW

    • [x] IPMW: single variable

    • [ ] IPMW: monotone

    • [ ] IPMW: nonmonotone (to add after implemented)

    • [x] G-formula: time-fixed binary treatment, binary outcome

    • [x] G-formula: time-fixed categorical treatment, binary outcome

    • [ ] G-formula: time-fixed continuous treatment, binary outcome (to add after implemented)

    • [x] G-formula: time-fixed binary treatment, continuous outcome

    • [x] G-formula: Monte Carlo

    • [x] G-formula: Iterative Conditional

    • [x] G-estimation of SNM

    • [x] AIPTW

    • [ ] AIPMW

    • [x] TMLE

    • [x] TMLE: stochastic treatment

    • [ ] LTMLE (to add after implemented)

    • [x] Quantitative bias analysis

    • [x] Functional form assessment

    • [x] Generalizability

    • [ ] Transportability (IPSW, g-transport, AIPSW)

    • [x] Monte Carlo g-formula by-hand (helps to explain underlying process)

    opened by pzivich 1
Releases(v0.8.0)
Owner
Paul Zivich
Epidemiology post-doc working in epidemiologic methods and infectious diseases.
Paul Zivich
face_recognization (FaceNet) + TFHE (HNP) + hand_face_detection (Mediapipe)

SuperControlSystem Face_Recognization (FaceNet) 面部识别 (FaceNet) Fully Homomorphic Encryption over the Torus (HNP) 环面全同态加密 (TFHE) Hand_Face_Detection (M

liziyu0104 2 Dec 30, 2021
Code for "Localization with Sampling-Argmax", NeurIPS 2021

Localization with Sampling-Argmax [Paper] [arXiv] [Project Page] Localization with Sampling-Argmax Jiefeng Li, Tong Chen, Ruiqi Shi, Yujing Lou, Yong-

JeffLi 71 Dec 17, 2022
Code for the paper Relation Prediction as an Auxiliary Training Objective for Improving Multi-Relational Graph Representations (AKBC 2021).

Relation Prediction as an Auxiliary Training Objective for Knowledge Base Completion This repo provides the code for the paper Relation Prediction as

Facebook Research 85 Jan 02, 2023
ManipNet: Neural Manipulation Synthesis with a Hand-Object Spatial Representation - SIGGRAPH 2021

ManipNet: Neural Manipulation Synthesis with a Hand-Object Spatial Representation - SIGGRAPH 2021 Dataset Code Demos Authors: He Zhang, Yuting Ye, Tak

HE ZHANG 194 Dec 06, 2022
Ensembling Off-the-shelf Models for GAN Training

Data-Efficient GANs with DiffAugment project | paper | datasets | video | slides Generated using only 100 images of Obama, grumpy cats, pandas, the Br

MIT HAN Lab 1.2k Dec 26, 2022
FMA: A Dataset For Music Analysis

FMA: A Dataset For Music Analysis Michaël Defferrard, Kirell Benzi, Pierre Vandergheynst, Xavier Bresson. International Society for Music Information

Michaël Defferrard 1.8k Dec 29, 2022
Learned image compression

Overview Pytorch code of our recent work A Unified End-to-End Framework for Efficient Deep Image Compression. We first release the code for Variationa

Jiaheng Liu 163 Dec 04, 2022
labelpix is a graphical image labeling interface for drawing bounding boxes

Welcome to labelpix 👋 labelpix is a graphical image labeling interface for drawing bounding boxes. 🏠 Homepage Install pip install -r requirements.tx

schissmantics 26 May 24, 2022
We propose a new method for effective shadow removal by regarding it as an exposure fusion problem.

Auto-exposure fusion for single-image shadow removal We propose a new method for effective shadow removal by regarding it as an exposure fusion proble

Qing Guo 146 Dec 31, 2022
A voice recognition assistant similar to amazon alexa, siri and google assistant.

kenyan-Siri Build an Artificial Assistant Full tutorial (video) To watch the tutorial, click on the image below Installation For windows users (run th

Alison Parker 3 Aug 19, 2022
CVPR2020 Counterfactual Samples Synthesizing for Robust VQA

CVPR2020 Counterfactual Samples Synthesizing for Robust VQA This repo contains code for our paper "Counterfactual Samples Synthesizing for Robust Visu

72 Dec 22, 2022
Tracking Pipeline helps you to solve the tracking problem more easily

Tracking_Pipeline Tracking_Pipeline helps you to solve the tracking problem more easily I integrate detection algorithms like: Yolov5, Yolov4, YoloX,

VNOpenAI 32 Dec 21, 2022
a reimplementation of LiteFlowNet in PyTorch that matches the official Caffe version

pytorch-liteflownet This is a personal reimplementation of LiteFlowNet [1] using PyTorch. Should you be making use of this work, please cite the paper

Simon Niklaus 365 Dec 31, 2022
Official PyTorch code for the paper: "Point-Based Modeling of Human Clothing" (ICCV 2021)

Point-Based Modeling of Human Clothing Paper | Project page | Video This is an official PyTorch code repository of the paper "Point-Based Modeling of

Visual Understanding Lab @ Samsung AI Center Moscow 64 Nov 22, 2022
Model Serving Made Easy

The easiest way to build Machine Learning APIs BentoML makes moving trained ML models to production easy: Package models trained with any ML framework

BentoML 4.4k Jan 08, 2023
Weighing Counts: Sequential Crowd Counting by Reinforcement Learning

LibraNet This repository includes the official implementation of LibraNet for crowd counting, presented in our paper: Weighing Counts: Sequential Crow

Hao Lu 18 Nov 05, 2022
MATLAB codes of the book "Digital Image Processing Fourth Edition" converted to Python

Digital Image Processing Python MATLAB codes of the book "Digital Image Processing Fourth Edition" converted to Python TO-DO: Refactor scripts, curren

Merve Noyan 24 Oct 16, 2022
A production-ready, scalable Indexer for the Jina neural search framework, based on HNSW and PSQL

🌟 HNSW + PostgreSQL Indexer HNSWPostgreSQLIndexer Jina is a production-ready, scalable Indexer for the Jina neural search framework. It combines the

Jina AI 25 Oct 14, 2022
PyTorch implementation of NeurIPS 2021 paper: "CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration"

CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration (NeurIPS 2021) PyTorch implementation of the paper: CoFiNet: Reli

76 Jan 03, 2023
TensorFlow implementation of original paper : https://github.com/hszhao/PSPNet

Keras implementation of PSPNet(caffe) Implemented Architecture of Pyramid Scene Parsing Network in Keras. For the best compability please use Python3.

VladKry 386 Dec 29, 2022