ANN model for prediction a spatio-temporal distribution of supercooled liquid in mixed-phase clouds using Doppler cloud radar spectra.

Related tags

Deep LearningVoodoo
Overview

Release DOI MIT License Twitter


Logo

VOODOO

Revealing supercooled liquid beyond lidar attenuation
Explore the docs »

Report Bug · Request Feature

Table of Contents
  1. About The Project
  2. Getting Started
  3. Usage
  4. Roadmap
  5. Contributing
  6. License
  7. Contact
  8. Acknowledgments

About The Project VOODOO

Machine learning approach using a convolutional neural network (CNN) classifier to relate Doppler spectra morphologies to the presence of (supercooled) liquid cloud droplets in mixed-phase clouds. Preprint will be available soon!

The release version provides the pre-trained machine learning model. Predictions are made by providing a list of Doppler radar time-spectrograms with dimensions:

  • number of spectral bins = 256
  • number of time steps = 6 (equivalent to 30 sec of observations)

The model was trained on RPG-FMCW94 data collected during DACAPO-PESO, therefore we recommend using this device for analysis. Supervision and validiation is provided by the CloudnetPy target classification and detection status.

Two examples are provided:

  • RPG-FMCW94 Doppler cloud radar Voodoo_predictor_RPG-FMCW94.ipynb test data is provided in the examples_data folder. The script requires a (hourly) LV0 binary file from RPG-FMCW94 and the corresponding Cloundet categorization file (for quicklooks and temporal resolution).
  • for KAZR Doppler cloud radar: Voodoo_predictor_KAZR.ipynb
  • help me test and add more devices :)

The CNN will ultimately be a feature within the Cloudnet processing suite.

Some examples of enhancend Cloudnet mixed-phase detection

previews.png

(back to top)

Getting Started

The examples given use hourly radar spectra files in there specific file formats, i.e. LV0 binaries form RPG-FMCW94 and NetCDF files from KAZR. Th Cloudnet categorization file provides the temporal resolution where the high resolution radar profiels are mappend onto the 30 sec Cloudnet grid. Additionately, radar reflectivity and attenuated backscatter coefficient are plotted.

Installation

Below is an example of how run the example script, which prepares the data, makes predictions and plots quicklooks. This method relies on external dependencies such as torch, xarray and others (see setup.py).

  1. Clone the repo

    git clone https://github.com/remsens-lim/Voodoo.git
  2. Install the package

    python setup.py install

(back to top)

Examples

Use this space to show useful examples of how a project can be used. Additional screenshots, code examples and demos work well in this space. You may also link to more resources.

  1. Open jupyter notebook
    jupyter notebook
  2. Open one of the example files Voodoo_predictor_KAZR.ipynbor Voodoo_predictor_RPG-FMCW94.ipynb to review the processing chain.

(back to top)

Roadmap

  • Released version 1
  • Add Tests
  • ???

See the open issues for a full list of proposed features (and known issues).

(back to top)

Contributing

Any contributions you make are greatly appreciated.

If you have a suggestion that would make this better, please fork the repo and create a pull request. You can also simply open an issue with the tag "enhancement". Don't forget to give the project a star! Thanks again!

  1. Fork the Project
  2. Create your Feature Branch (git checkout -b feature/AmazingFeature)
  3. Commit your Changes (git commit -m 'Add some AmazingFeature')
  4. Push to the Branch (git push origin feature/AmazingFeature)
  5. Open a Pull Request

(back to top)

License

Distributed under the MIT License. See LICENSE for more information.

(back to top)

Contact

Willi Schimmel - @KarlJohnsonnn - [email protected]

Project Link: https://github.com/remsens-lim/Voodoo

(back to top)

Acknowledgments

Special thanks for templates and help during implementation.

(back to top)

You might also like...
Learning Spatio-Temporal Transformer for Visual Tracking
Learning Spatio-Temporal Transformer for Visual Tracking

STARK The official implementation of the paper Learning Spatio-Temporal Transformer for Visual Tracking Hiring research interns for visual transformer

Digital Twin Mobility Profiling: A Spatio-Temporal Graph Learning Approach

Digital Twin Mobility Profiling: A Spatio-Temporal Graph Learning Approach This is the implementation of traffic prediction code in DTMP based on PyTo

Self-supervised spatio-spectro-temporal represenation learning for EEG analysis

EEG-Oriented Self-Supervised Learning and Cluster-Aware Adaptation This repository provides a tensorflow implementation of a submitted paper: EEG-Orie

[CVPR 2022 Oral] TubeDETR: Spatio-Temporal Video Grounding with Transformers

TubeDETR: Spatio-Temporal Video Grounding with Transformers Website • STVG Demo • Paper This repository provides the code for our paper. This includes

Radar-to-Lidar: Heterogeneous Place Recognition via Joint Learning
Radar-to-Lidar: Heterogeneous Place Recognition via Joint Learning

radar-to-lidar-place-recognition This page is the coder of a pre-print, implemented by PyTorch. If you have some questions on this project, please fee

Fuse radar and camera for detection
Fuse radar and camera for detection

SAF-FCOS: Spatial Attention Fusion for Obstacle Detection using MmWave Radar and Vision Sensor This project hosts the code for implementing the SAF-FC

Liquid Warping GAN with Attention: A Unified Framework for Human Image Synthesis
Liquid Warping GAN with Attention: A Unified Framework for Human Image Synthesis

Liquid Warping GAN with Attention: A Unified Framework for Human Image Synthesis, including human motion imitation, appearance transfer, and novel view synthesis. Currently the paper is under review of IEEE TPAMI. It is an extension of our previous ICCV project impersonator, and it has a more powerful ability in generalization and produces higher-resolution results (512 x 512, 1024 x 1024) than the previous ICCV version.

Cascaded Deep Video Deblurring Using Temporal Sharpness Prior and Non-local Spatial-Temporal Similarity
Cascaded Deep Video Deblurring Using Temporal Sharpness Prior and Non-local Spatial-Temporal Similarity

This repository is the official PyTorch implementation of Cascaded Deep Video Deblurring Using Temporal Sharpness Prior and Non-local Spatial-Temporal Similarity

CVPR2021: Temporal Context Aggregation Network for Temporal Action Proposal Refinement
CVPR2021: Temporal Context Aggregation Network for Temporal Action Proposal Refinement

Temporal Context Aggregation Network - Pytorch This repo holds the pytorch-version codes of paper: "Temporal Context Aggregation Network for Temporal

Releases(v1.0.0)
Owner
remsens-lim
Leipzig Institute for Meteorology Remote-Sensing and the Arctic Climate Systems
remsens-lim
Code and hyperparameters for the paper "Generative Adversarial Networks"

Generative Adversarial Networks This repository contains the code and hyperparameters for the paper: "Generative Adversarial Networks." Ian J. Goodfel

Ian Goodfellow 3.5k Jan 08, 2023
Code and Data for NeurIPS2021 Paper "A Dataset for Answering Time-Sensitive Questions"

Time-Sensitive-QA The repo contains the dataset and code for NeurIPS2021 (dataset track) paper Time-Sensitive Question Answering dataset. The dataset

wenhu chen 35 Nov 14, 2022
A cross-lingual COVID-19 fake news dataset

CrossFake An English-Chinese COVID-19 fake&real news dataset from the ICDMW 2021 paper below: Cross-lingual COVID-19 Fake News Detection. Jiangshu Du,

Yingtong Dou 11 Dec 01, 2022
[NeurIPS 2021] Source code for the paper "Qu-ANTI-zation: Exploiting Neural Network Quantization for Achieving Adversarial Outcomes"

Qu-ANTI-zation This repository contains the code for reproducing the results of our paper: Qu-ANTI-zation: Exploiting Quantization Artifacts for Achie

Secure AI Systems Lab 8 Mar 26, 2022
Codebase for "Revisiting spatio-temporal layouts for compositional action recognition" (Oral at BMVC 2021).

Revisiting spatio-temporal layouts for compositional action recognition Codebase for "Revisiting spatio-temporal layouts for compositional action reco

Gorjan 20 Dec 15, 2022
PyTorch implementation of adversarial patch

adversarial-patch PyTorch implementation of adversarial patch This is an implementation of the Adversarial Patch paper. Not official and likely to hav

Jamie Hayes 172 Nov 29, 2022
Yolo algorithm for detection + centroid tracker to track vehicles

Vehicle Tracking using Centroid tracker Algorithm used : Yolo algorithm for detection + centroid tracker to track vehicles Backend : opencv and python

6 Dec 21, 2022
Boosted CVaR Classification (NeurIPS 2021)

Boosted CVaR Classification Runtian Zhai, Chen Dan, Arun Sai Suggala, Zico Kolter, Pradeep Ravikumar NeurIPS 2021 Table of Contents Quick Start Train

Runtian Zhai 4 Feb 15, 2022
Continual reinforcement learning baselines: experiment specifications, implementation of existing methods, and common metrics. Easily extensible to new methods.

Continual Reinforcement Learning This repository provides a simple way to run continual reinforcement learning experiments in PyTorch, including evalu

55 Dec 24, 2022
An addernet CUDA version

Training addernet accelerated by CUDA Usage cd adder_cuda python setup.py install cd .. python main.py Environment pytorch 1.10.0 CUDA 11.3 benchmark

LingXY 4 Jun 20, 2022
*ObjDetApp* deploys a pytorch model for object detection

*ObjDetApp* deploys a pytorch model for object detection

Will Chao 1 Dec 26, 2021
Deep learning (neural network) based remote photoplethysmography: how to extract pulse signal from video using deep learning tools

Deep-rPPG: Camera-based pulse estimation using deep learning tools Deep learning (neural network) based remote photoplethysmography: how to extract pu

Terbe Dániel 138 Dec 17, 2022
Mining-the-Social-Web-3rd-Edition - The official online compendium for Mining the Social Web, 3rd Edition (O'Reilly, 2018)

Mining the Social Web, 3rd Edition The official code repository for Mining the Social Web, 3rd Edition (O'Reilly, 2019). The book is available from Am

Mikhail Klassen 838 Jan 01, 2023
Playing around with FastAPI and streamlit to create a YoloV5 object detector

FastAPI-Streamlit-based-YoloV5-detector Playing around with FastAPI and streamlit to create a YoloV5 object detector It turns out that a User Interfac

2 Jan 20, 2022
Video Contrastive Learning with Global Context

Video Contrastive Learning with Global Context (VCLR) This is the official PyTorch implementation of our VCLR paper. Install dependencies environments

143 Dec 26, 2022
[arXiv] What-If Motion Prediction for Autonomous Driving ❓🚗💨

WIMP - What If Motion Predictor Reference PyTorch Implementation for What If Motion Prediction [PDF] [Dynamic Visualizations] Setup Requirements The W

William Qi 96 Dec 29, 2022
Activity image-based video retrieval

Cross-modal-retrieval Our approach is focus on Activity Image-to-Video Retrieval (AIVR) task. The compared methods are state-of-the-art single modalit

BCMI 75 Oct 21, 2021
House-GAN++: Generative Adversarial Layout Refinement Network towards Intelligent Computational Agent for Professional Architects

House-GAN++ Code and instructions for our paper: House-GAN++: Generative Adversarial Layout Refinement Network towards Intelligent Computational Agent

122 Dec 28, 2022
HINet: Half Instance Normalization Network for Image Restoration

HINet: Half Instance Normalization Network for Image Restoration Liangyu Chen, Xin Lu, Jie Zhang, Xiaojie Chu, Chengpeng Chen Paper: https://arxiv.org

303 Dec 31, 2022
A Keras implementation of CapsNet in the paper: Sara Sabour, Nicholas Frosst, Geoffrey E Hinton. Dynamic Routing Between Capsules

NOTE This implementation is fork of https://github.com/XifengGuo/CapsNet-Keras , applied to IMDB texts reviews dataset. CapsNet-Keras A Keras implemen

Lauro Moraes 5 Oct 23, 2022