Collections of pydantic models

Overview

pydantic-collections

Build Status Coverage Status

The pydantic-collections package provides BaseCollectionModel class that allows you to manipulate collections of pydantic models (and any other types supported by pydantic).

Requirements

  • Python >= 3.7
  • pydantic >= 1.8.2

Installation

pip install pydantic-collections

Usage

Basic usage

from datetime import datetime

from pydantic import BaseModel
from pydantic_collections import BaseCollectionModel


class User(BaseModel):
    id: int
    name: str
    birth_date: datetime


class UserCollection(BaseCollectionModel[User]):
    pass


 user_data = [
        {'id': 1, 'name': 'Bender', 'birth_date': '2010-04-01T12:59:59'},
        {'id': 2, 'name': 'Balaganov', 'birth_date': '2020-04-01T12:59:59'},
    ]

users = UserCollection(user_data)
print(users)
#> UserCollection([User(id=1, name='Bender', birth_date=datetime.datetime(2010, 4, 1, 12, 59, 59)), User(id=2, name='Balaganov', birth_date=datetime.datetime(2020, 4, 1, 12, 59, 59))])
print(users.dict())
#> [{'id': 1, 'name': 'Bender', 'birth_date': datetime.datetime(2010, 4, 1, 12, 59, 59)}, {'id': 2, 'name': 'Balaganov', 'birth_date': datetime.datetime(2020, 4, 1, 12, 59, 59)}]
print(users.json())
#> [{"id": 1, "name": "Bender", "birth_date": "2010-04-01T12:59:59"}, {"id": 2, "name": "Balaganov", "birth_date": "2020-04-01T12:59:59"}]

Strict assignment validation

By default BaseCollectionModel has a strict assignment check

...
users = UserCollection()
users.append(User(id=1, name='Bender', birth_date=datetime.utcnow()))  # OK
users.append({'id': 1, 'name': 'Bender', 'birth_date': '2010-04-01T12:59:59'})
#> pydantic.error_wrappers.ValidationError: 1 validation error for UserCollection
#> __root__ -> 2
#>  instance of User expected (type=type_error.arbitrary_type; expected_arbitrary_type=User)

This behavior can be changed via Model Config

...
class UserCollection(BaseCollectionModel[User]):
    class Config:
        validate_assignment_strict = False
        
users = UserCollection()
users.append({'id': 1, 'name': 'Bender', 'birth_date': '2010-04-01T12:59:59'})  # OK
assert users[0].__class__ is User
assert users[0].id == 1

Using as a model field

BaseCollectionModel is a subclass of BaseModel, so you can use it as a model field

...
class UserContainer(BaseModel):
    users: UserCollection = []
        
data = {
    'users': [
        {'id': 1, 'name': 'Bender', 'birth_date': '2010-04-01T12:59:59'},
        {'id': 2, 'name': 'Balaganov', 'birth_date': '2020-04-01T12:59:59'},
    ]
}

container = UserContainer(**data)
container.users.append(User(...))
...
You might also like...
vartests is a Python library to perform some statistic tests to evaluate Value at Risk (VaR) Models

vartests is a Python library to perform some statistic tests to evaluate Value at Risk (VaR) Models, such as: T-test: verify if mean of distribution i

A model checker for verifying properties in epistemic models

Epistemic Model Checker This is a model checker for verifying properties in epistemic models. The goal of the model checker is to check for Pluralisti

Fit models to your data in Python with Sherpa.

Table of Contents Sherpa License How To Install Sherpa Using Anaconda Using pip Building from source History Release History Sherpa Sherpa is a modeli

 pydantic-i18n is an extension to support an i18n for the pydantic error messages.
pydantic-i18n is an extension to support an i18n for the pydantic error messages.

pydantic-i18n is an extension to support an i18n for the pydantic error messages

Python collections that are backended by sqlite3 DB and are compatible with the built-in collections

sqlitecollections Python collections that are backended by sqlite3 DB and are compatible with the built-in collections Installation $ pip install git+

Seamlessly integrate pydantic models in your Sphinx documentation.
Seamlessly integrate pydantic models in your Sphinx documentation.

Seamlessly integrate pydantic models in your Sphinx documentation.

🪄 Auto-generate Streamlit UI from Pydantic Models and Dataclasses.
🪄 Auto-generate Streamlit UI from Pydantic Models and Dataclasses.

Streamlit Pydantic Auto-generate Streamlit UI elements from Pydantic models. Getting Started • Documentation • Support • Report a Bug • Contribution •

Hyperlinks for pydantic models

Hyperlinks for pydantic models In a typical web application relationships between resources are modeled by primary and foreign keys in a database (int

Pydantic models for pywttr and aiopywttr.

Pydantic models for pywttr and aiopywttr.

EMNLP 2021 Adapting Language Models for Zero-shot Learning by Meta-tuning on Dataset and Prompt Collections

Adapting Language Models for Zero-shot Learning by Meta-tuning on Dataset and Prompt Collections Ruiqi Zhong, Kristy Lee*, Zheng Zhang*, Dan Klein EMN

PyTorch implementation of
PyTorch implementation of "Representing Shape Collections with Alignment-Aware Linear Models" paper.

deep-linear-shapes PyTorch implementation of "Representing Shape Collections with Alignment-Aware Linear Models" paper. If you find this code useful i

flask extension for integration with the awesome pydantic package

Flask-Pydantic Flask extension for integration of the awesome pydantic package with Flask. Installation python3 -m pip install Flask-Pydantic Basics v

flask extension for integration with the awesome pydantic package

Flask-Pydantic Flask extension for integration of the awesome pydantic package with Flask. Installation python3 -m pip install Flask-Pydantic Basics v

A curated list of awesome things related to Pydantic! 🌪️

Awesome Pydantic A curated list of awesome things related to Pydantic. These packages have not been vetted or approved by the pydantic team. Feel free

Pydantic model support for Django ORM

Pydantic model support for Django ORM

flask extension for integration with the awesome pydantic package

flask extension for integration with the awesome pydantic package

Flask Sugar is a web framework for building APIs with Flask, Pydantic and Python 3.6+ type hints.
Flask Sugar is a web framework for building APIs with Flask, Pydantic and Python 3.6+ type hints.

Flask Sugar is a web framework for building APIs with Flask, Pydantic and Python 3.6+ type hints. check parameters and generate API documents automatically. Flask Sugar是一个基于flask,pyddantic,类型注解的API框架, 可以检查参数并自动生成API文档

Pydantic-ish YAML configuration management.
Pydantic-ish YAML configuration management.

Pydantic-ish YAML configuration management.

(A)sync client for sms.ru with pydantic responses

🚧 aioSMSru Send SMS Check SMS status Get SMS cost Get balance Get limit Get free limit Get my senders Check login/password Add to stoplist Remove fro

Comments
  • Bug dict() method: ignore or raised exception when using dict function attribute (ex. include, exclude, etc.)

    Bug dict() method: ignore or raised exception when using dict function attribute (ex. include, exclude, etc.)

    Hi there, I tried to use the method dict but i got an error: KeyError(__root__) Here an example:

    1. Model structure:
    
    from datetime import datetime, time
    from typing import Optional, Union
    from pydantic import Field, validator, BaseModel
    from pydantic_collections import BaseCollectionModel
    
    class OpeningTime(BaseModel):
        weekday: int = Field(..., alias="weekday")
        day: Optional[str] = Field(alias="day")  # NB: keep it after number_weekday attribute
        from_time: Optional[time] = Field(alias="fromTime")
        to_time: Optional[time] = Field(alias="toTime")
    
        @validator("day", pre=True)
        def generate_weekday(cls, weekday: str, values) -> str:
            if weekday is None or len(weekday) == 0:
                return WEEKDAYS[str(values["weekday"])]
            return weekday
    
    
    
    class OpeningTimes(BaseCollectionModel[OpeningTime]):
        pass
    
    
    class PaymentMethod(BaseModel):
        type: str = Field(..., alias="type")
        card_type: str = Field(..., alias="cardType")
    
    
    class PaymentMethods(BaseCollectionModel[PaymentMethod]):
        pass
    
    
    class FuelType(BaseModel):
        type: str = Field(..., alias="Fuel")
    
    
    class FuelTypes(BaseCollectionModel[FuelType]):
        pass
    
    
    class AdditionalInfoStation(BaseModel):
        opening_times: Optional[OpeningTimes] = Field(alias="openingTimes")
        car_wash_opening_times: Optional[OpeningTimes] = Field(alias="openingTimesCarWash")
        payment_methods: PaymentMethods = Field(..., alias="paymentMethods")
        fuel_types: FuelTypes = Field(..., alias="fuelTypes")
    
    
    class Example(BaseModel):
        hash_key: int = Field(..., alias="hashKey")
        range_key: str = Field(..., alias="rangeKey")
        location_id: str = Field(..., alias="locationId")
        name: str = Field(..., alias="name")
        street: str = Field(..., alias="street")
        address_number: str = Field(..., alias="addressNumber")
        zip_code: int = Field(..., alias="zipCode")
        city: str = Field(..., alias="city")
        region: str = Field(..., alias="region")
        country: str = Field(..., alias="country")
        additional_info: Union[AdditionalInfoStation] = Field(..., alias="additionalInfo")
    
    
    class ExampleList(BaseCollectionModel[EniGeoPoint]):
        pass
    
    1. Imagine that there is an ExampleList populated object and needed filters field during apply of dict method:
    example_list: ExampleList = ExampleList.parse_obj([{......}])
    
    #This istruction raised exception
    example_list.dict(by_alias=True, inlcude={"hash_key", "range_key"})
    
    1. The last istruction raise an error: Message: KeyError('__root__')

    My env is:

    • pydantic==1.9.1
    • pydantic-collections==0.2.0
    • python version 3.9.7

    If you need more info please contact me.

    opened by aferrari94 6
Releases(v0.4.0)
Owner
Roman Snegirev
Roman Snegirev
A pipeline that creates consensus sequences from a Nanopore reads. I

A pipeline that creates consensus sequences from a Nanopore reads. It clusters reads that are similar to each other and creates a consensus that is then identified using BLAST.

Ada Madejska 2 May 15, 2022
Validation and inference over LinkML instance data using souffle

Translates LinkML schemas into Datalog programs and executes them using Souffle, enabling advanced validation and inference over instance data

Linked data Modeling Language 7 Aug 07, 2022
A script to "SHUA" H1-2 map of Mercenaries mode of Hearthstone

lushi_script Introduction This script is to "SHUA" H1-2 map of Mercenaries mode of Hearthstone Installation Make sure you installed python=3.6. To in

210 Jan 02, 2023
A Python and R autograding solution

Otter-Grader Otter Grader is a light-weight, modular open-source autograder developed by the Data Science Education Program at UC Berkeley. It is desi

Infrastructure Team 93 Jan 03, 2023
Feature Detection Based Template Matching

Feature Detection Based Template Matching The classification of the photos was made using the OpenCv template Matching method. Installation Use the pa

Muhammet Erem 2 Nov 18, 2021
Mining the Stack Overflow Developer Survey

Mining the Stack Overflow Developer Survey A prototype data mining application to compare the accuracy of decision tree and random forest regression m

1 Nov 16, 2021
Kennedy Institute of Rheumatology University of Oxford Project November 2019

TradingBot6M Kennedy Institute of Rheumatology University of Oxford Project November 2019 Run Change api.txt to binance api key: https://www.binance.c

Kannan SAR 2 Nov 16, 2021
Hangar is version control for tensor data. Commit, branch, merge, revert, and collaborate in the data-defined software era.

Overview docs tests package Hangar is version control for tensor data. Commit, branch, merge, revert, and collaborate in the data-defined software era

Tensorwerk 193 Nov 29, 2022
This tool parses log data and allows to define analysis pipelines for anomaly detection.

logdata-anomaly-miner This tool parses log data and allows to define analysis pipelines for anomaly detection. It was designed to run the analysis wit

AECID 32 Nov 27, 2022
Lale is a Python library for semi-automated data science.

Lale is a Python library for semi-automated data science. Lale makes it easy to automatically select algorithms and tune hyperparameters of pipelines that are compatible with scikit-learn, in a type-

International Business Machines 293 Dec 29, 2022
Toolchest provides APIs for scientific and bioinformatic data analysis.

Toolchest Python Client Toolchest provides APIs for scientific and bioinformatic data analysis. It allows you to abstract away the costliness of runni

Toolchest 11 Jun 30, 2022
ICLR 2022 Paper submission trend analysis

Visualize ICLR 2022 OpenReview Data

Jintang Li 75 Dec 06, 2022
Utilize data analytics skills to solve real-world business problems using Humana’s big data

Humana-Mays-2021-HealthCare-Analytics-Case-Competition- The goal of the project is to utilize data analytics skills to solve real-world business probl

Yongxian (Caroline) Lun 1 Dec 27, 2021
A computer algebra system written in pure Python

SymPy See the AUTHORS file for the list of authors. And many more people helped on the SymPy mailing list, reported bugs, helped organize SymPy's part

SymPy 9.9k Dec 31, 2022
Project: Netflix Data Analysis and Visualization with Python

Project: Netflix Data Analysis and Visualization with Python Table of Contents General Info Installation Demo Usage and Main Functionalities Contribut

Kathrin Hälbich 2 Feb 13, 2022
Display the behaviour of a realtime program with a scope or logic analyser.

1. A monitor for realtime MicroPython code This library provides a means of examining the behaviour of a running system. It was initially designed to

Peter Hinch 17 Dec 05, 2022
Exploring the Top ML and DL GitHub Repositories

This repository contains my work related to my project where I scraped data on the most popular machine learning and deep learning GitHub repositories in order to further visualize and analyze it.

Nico Van den Hooff 17 Aug 21, 2022
fds is a tool for Data Scientists made by DAGsHub to version control data and code at once.

Fast Data Science, AKA fds, is a CLI for Data Scientists to version control data and code at once, by conveniently wrapping git and dvc

DAGsHub 359 Dec 22, 2022
Python Library for learning (Structure and Parameter) and inference (Statistical and Causal) in Bayesian Networks.

pgmpy pgmpy is a python library for working with Probabilistic Graphical Models. Documentation and list of algorithms supported is at our official sit

pgmpy 2.2k Dec 25, 2022
Python Practicum - prepare for your Data Science interview or get a refresher.

Python-Practicum Python Practicum - prepare for your Data Science interview or get a refresher. Data Data visualization using data on births from the

Jovan Trajceski 1 Jul 27, 2021