VarCLR: Variable Semantic Representation Pre-training via Contrastive Learning

Overview
   

Unittest GitHub stars GitHub license Black

VarCLR: Variable Representation Pre-training via Contrastive Learning

New: Paper accepted by ICSE 2022. Preprint at arXiv!

This repository contains code and pre-trained models for VarCLR, a contrastive learning based approach for learning semantic representations of variable names that effectively captures variable similarity, with state-of-the-art results on [email protected].

Step 0: Install

pip install -e .

Step 1: Load a Pre-trained VarCLR Model

from varclr.models import Encoder
model = Encoder.from_pretrained("varclr-codebert")

Step 2: VarCLR Variable Embeddings

Get embedding of one variable

emb = model.encode("squareslab")
print(emb.shape)
# torch.Size([1, 768])

Get embeddings of list of variables (supports batching)

emb = model.encode(["squareslab", "strudel"])
print(emb.shape)
# torch.Size([2, 768])

Step 2: Get VarCLR Similarity Scores

Get similarity scores of N variable pairs

print(model.score("squareslab", "strudel"))
# [0.42812108993530273]
print(model.score(["squareslab", "average", "max", "max"], ["strudel", "mean", "min", "maximum"]))
# [0.42812108993530273, 0.8849745988845825, 0.8035818338394165, 0.889922022819519]

Get pairwise (N * M) similarity scores from two lists of variables

variable_list = ["squareslab", "strudel", "neulab"]
print(model.cross_score("squareslab", variable_list))
# [[1.0000007152557373, 0.4281214475631714, 0.7207341194152832]]
print(model.cross_score(variable_list, variable_list))
# [[1.0000007152557373, 0.4281214475631714, 0.7207341194152832],
#  [0.4281214475631714, 1.0000004768371582, 0.549992561340332],
#  [0.7207341194152832, 0.549992561340332, 1.000000238418579]]

Step 3: Reproduce IdBench Benchmark Results

Load the IdBench benchmark

from varclr.benchmarks import Benchmark

# Similarity on IdBench-Medium
b1 = Benchmark.build("idbench", variant="medium", metric="similarity")
# Relatedness on IdBench-Large
b2 = Benchmark.build("idbench", variant="large", metric="relatedness")

Compute VarCLR scores and evaluate

id1_list, id2_list = b1.get_inputs()
predicted = model.score(id1_list, id2_list)
print(b1.evaluate(predicted))
# {'spearmanr': 0.5248567181503295, 'pearsonr': 0.5249843473193132}

print(b2.evaluate(model.score(*b2.get_inputs())))
# {'spearmanr': 0.8012168379981921, 'pearsonr': 0.8021791703187449}

Let's compare with the original CodeBERT

codebert = Encoder.from_pretrained("codebert")
print(b1.evaluate(codebert.score(*b1.get_inputs())))
# {'spearmanr': 0.2056582946575104, 'pearsonr': 0.1995058696927054}
print(b2.evaluate(codebert.score(*b2.get_inputs())))
# {'spearmanr': 0.3909218857993804, 'pearsonr': 0.3378219622284688}

Results on IdBench benchmarks

Similarity

Method Small Medium Large
FT-SG 0.30 0.29 0.28
LV 0.32 0.30 0.30
FT-cbow 0.35 0.38 0.38
VarCLR-Avg 0.47 0.45 0.44
VarCLR-LSTM 0.50 0.49 0.49
VarCLR-CodeBERT 0.53 0.53 0.51
Combined-IdBench 0.48 0.59 0.57
Combined-VarCLR 0.66 0.65 0.62

Relatedness

Method Small Medium Large
LV 0.48 0.47 0.48
FT-SG 0.70 0.71 0.68
FT-cbow 0.72 0.74 0.73
VarCLR-Avg 0.67 0.66 0.66
VarCLR-LSTM 0.71 0.70 0.69
VarCLR-CodeBERT 0.79 0.79 0.80
Combined-IdBench 0.71 0.78 0.79
Combined-VarCLR 0.79 0.81 0.85

Pre-train your own VarCLR models

Coming soon.

Cite

If you find VarCLR useful in your research, please cite our [email protected]:

@misc{chen2021varclr,
      title={VarCLR: Variable Semantic Representation Pre-training via Contrastive Learning},
      author={Qibin Chen and Jeremy Lacomis and Edward J. Schwartz and Graham Neubig and Bogdan Vasilescu and Claire Le Goues},
      year={2021},
      eprint={2112.02650},
      archivePrefix={arXiv},
      primaryClass={cs.SE}
}
Owner
squaresLab
squaresLab
E2VID_ROS - E2VID_ROS: E2VID to a real-time system

E2VID_ROS Introduce We extend E2VID to a real-time system. Because Python ROS ca

Robin Shaun 7 Apr 17, 2022
Exploiting Robust Unsupervised Video Person Re-identification

Exploiting Robust Unsupervised Video Person Re-identification Implementation of the proposed uPMnet. For the preprint, please refer to [Arxiv]. Gettin

1 Apr 09, 2022
Self-Supervised Generative Style Transfer for One-Shot Medical Image Segmentation

Self-Supervised Generative Style Transfer for One-Shot Medical Image Segmentation This repository contains the Pytorch implementation of the proposed

Devavrat Tomar 19 Nov 10, 2022
TigerLily: Finding drug interactions in silico with the Graph.

Drug Interaction Prediction with Tigerlily Documentation | Example Notebook | Youtube Video | Project Report Tigerlily is a TigerGraph based system de

Benedek Rozemberczki 91 Dec 30, 2022
[EMNLP 2020] Keep CALM and Explore: Language Models for Action Generation in Text-based Games

Contextual Action Language Model (CALM) and the ClubFloyd Dataset Code and data for paper Keep CALM and Explore: Language Models for Action Generation

Princeton Natural Language Processing 43 Dec 16, 2022
Code used to generate the results appearing in "Train longer, generalize better: closing the generalization gap in large batch training of neural networks"

Train longer, generalize better - Big batch training This is a code repository used to generate the results appearing in "Train longer, generalize bet

Elad Hoffer 145 Sep 16, 2022
Flexible Networks for Learning Physical Dynamics of Deformable Objects (2021)

Flexible Networks for Learning Physical Dynamics of Deformable Objects (2021) By Jinhyung Park, Dohae Lee, In-Kwon Lee from Yonsei University (Seoul,

Jinhyung Park 0 Jan 09, 2022
An implementation of the efficient attention module.

Efficient Attention An implementation of the efficient attention module. Description Efficient attention is an attention mechanism that substantially

Shen Zhuoran 194 Dec 15, 2022
Code base for "On-the-Fly Test-time Adaptation for Medical Image Segmentation"

On-the-Fly Adaptation Official Pytorch Code base for On-the-Fly Test-time Adaptation for Medical Image Segmentation Paper Introduction One major probl

Jeya Maria Jose 17 Nov 10, 2022
Pytorch implementation of Nueral Style transfer

Nueral Style Transfer Pytorch implementation of Nueral style transfer algorithm , it is used to apply artistic styles to content images . Content is t

Abhinav 9 Oct 15, 2022
HiFi-GAN: High Fidelity Denoising and Dereverberation Based on Speech Deep Features in Adversarial Networks

HiFiGAN Denoiser This is a Unofficial Pytorch implementation of the paper HiFi-GAN: High Fidelity Denoising and Dereverberation Based on Speech Deep F

Rishikesh (ऋषिकेश) 134 Dec 27, 2022
This repository contains an implementation of ConvMixer for the ICLR 2022 submission "Patches Are All You Need?".

Patches Are All You Need? 🤷 This repository contains an implementation of ConvMixer for the ICLR 2022 submission "Patches Are All You Need?". Code ov

ICLR 2022 Author 934 Dec 30, 2022
Official repository for Jia, Raghunathan, Göksel, and Liang, "Certified Robustness to Adversarial Word Substitutions" (EMNLP 2019)

Certified Robustness to Adversarial Word Substitutions This is the official GitHub repository for the following paper: Certified Robustness to Adversa

Robin Jia 38 Oct 16, 2022
TensorFlow Metal Backend on Apple Silicon Experiments (just for fun)

tf-metal-experiments TensorFlow Metal Backend on Apple Silicon Experiments (just for fun) Setup This is tested on M1 series Apple Silicon SOC only. Te

Timothy Liu 161 Jan 03, 2023
PyTorch Lightning implementation of Automatic Speech Recognition

lasr Lightening Automatic Speech Recognition An MIT License ASR research library, built on PyTorch-Lightning, for developing end-to-end ASR models. In

Soohwan Kim 40 Sep 19, 2022
OpenABC-D: A Large-Scale Dataset For Machine Learning Guided Integrated Circuit Synthesis

OpenABC-D: A Large-Scale Dataset For Machine Learning Guided Integrated Circuit Synthesis Overview OpenABC-D is a large-scale labeled dataset generate

NYU Machine-Learning guided Design Automation (MLDA) 31 Nov 22, 2022
TensorFlow implementation of Elastic Weight Consolidation

Elastic weight consolidation Introduction A TensorFlow implementation of elastic weight consolidation as presented in Overcoming catastrophic forgetti

James Stokes 67 Oct 11, 2022
Official Pytorch and JAX implementation of "Efficient-VDVAE: Less is more"

The Official Pytorch and JAX implementation of "Efficient-VDVAE: Less is more" Arxiv preprint Louay Hazami   ·   Rayhane Mama   ·   Ragavan Thurairatn

Rayhane Mama 144 Dec 23, 2022
Causal Influence Detection for Improving Efficiency in Reinforcement Learning

Causal Influence Detection for Improving Efficiency in Reinforcement Learning This repository contains the code release for the paper "Causal Influenc

Autonomous Learning Group 21 Nov 29, 2022
Code, pre-trained models and saliency results for the paper "Boosting RGB-D Saliency Detection by Leveraging Unlabeled RGB Images".

Boosting RGB-D Saliency Detection by Leveraging Unlabeled RGB This repository is the official implementation of the paper. Our results comming soon in

Xiaoqiang Wang 8 May 22, 2022