VarCLR: Variable Semantic Representation Pre-training via Contrastive Learning

Overview
   

Unittest GitHub stars GitHub license Black

VarCLR: Variable Representation Pre-training via Contrastive Learning

New: Paper accepted by ICSE 2022. Preprint at arXiv!

This repository contains code and pre-trained models for VarCLR, a contrastive learning based approach for learning semantic representations of variable names that effectively captures variable similarity, with state-of-the-art results on [email protected].

Step 0: Install

pip install -e .

Step 1: Load a Pre-trained VarCLR Model

from varclr.models import Encoder
model = Encoder.from_pretrained("varclr-codebert")

Step 2: VarCLR Variable Embeddings

Get embedding of one variable

emb = model.encode("squareslab")
print(emb.shape)
# torch.Size([1, 768])

Get embeddings of list of variables (supports batching)

emb = model.encode(["squareslab", "strudel"])
print(emb.shape)
# torch.Size([2, 768])

Step 2: Get VarCLR Similarity Scores

Get similarity scores of N variable pairs

print(model.score("squareslab", "strudel"))
# [0.42812108993530273]
print(model.score(["squareslab", "average", "max", "max"], ["strudel", "mean", "min", "maximum"]))
# [0.42812108993530273, 0.8849745988845825, 0.8035818338394165, 0.889922022819519]

Get pairwise (N * M) similarity scores from two lists of variables

variable_list = ["squareslab", "strudel", "neulab"]
print(model.cross_score("squareslab", variable_list))
# [[1.0000007152557373, 0.4281214475631714, 0.7207341194152832]]
print(model.cross_score(variable_list, variable_list))
# [[1.0000007152557373, 0.4281214475631714, 0.7207341194152832],
#  [0.4281214475631714, 1.0000004768371582, 0.549992561340332],
#  [0.7207341194152832, 0.549992561340332, 1.000000238418579]]

Step 3: Reproduce IdBench Benchmark Results

Load the IdBench benchmark

from varclr.benchmarks import Benchmark

# Similarity on IdBench-Medium
b1 = Benchmark.build("idbench", variant="medium", metric="similarity")
# Relatedness on IdBench-Large
b2 = Benchmark.build("idbench", variant="large", metric="relatedness")

Compute VarCLR scores and evaluate

id1_list, id2_list = b1.get_inputs()
predicted = model.score(id1_list, id2_list)
print(b1.evaluate(predicted))
# {'spearmanr': 0.5248567181503295, 'pearsonr': 0.5249843473193132}

print(b2.evaluate(model.score(*b2.get_inputs())))
# {'spearmanr': 0.8012168379981921, 'pearsonr': 0.8021791703187449}

Let's compare with the original CodeBERT

codebert = Encoder.from_pretrained("codebert")
print(b1.evaluate(codebert.score(*b1.get_inputs())))
# {'spearmanr': 0.2056582946575104, 'pearsonr': 0.1995058696927054}
print(b2.evaluate(codebert.score(*b2.get_inputs())))
# {'spearmanr': 0.3909218857993804, 'pearsonr': 0.3378219622284688}

Results on IdBench benchmarks

Similarity

Method Small Medium Large
FT-SG 0.30 0.29 0.28
LV 0.32 0.30 0.30
FT-cbow 0.35 0.38 0.38
VarCLR-Avg 0.47 0.45 0.44
VarCLR-LSTM 0.50 0.49 0.49
VarCLR-CodeBERT 0.53 0.53 0.51
Combined-IdBench 0.48 0.59 0.57
Combined-VarCLR 0.66 0.65 0.62

Relatedness

Method Small Medium Large
LV 0.48 0.47 0.48
FT-SG 0.70 0.71 0.68
FT-cbow 0.72 0.74 0.73
VarCLR-Avg 0.67 0.66 0.66
VarCLR-LSTM 0.71 0.70 0.69
VarCLR-CodeBERT 0.79 0.79 0.80
Combined-IdBench 0.71 0.78 0.79
Combined-VarCLR 0.79 0.81 0.85

Pre-train your own VarCLR models

Coming soon.

Cite

If you find VarCLR useful in your research, please cite our [email protected]:

@misc{chen2021varclr,
      title={VarCLR: Variable Semantic Representation Pre-training via Contrastive Learning},
      author={Qibin Chen and Jeremy Lacomis and Edward J. Schwartz and Graham Neubig and Bogdan Vasilescu and Claire Le Goues},
      year={2021},
      eprint={2112.02650},
      archivePrefix={arXiv},
      primaryClass={cs.SE}
}
Owner
squaresLab
squaresLab
Train emoji embeddings based on emoji descriptions.

emoji2vec This is my attempt to train, visualize and evaluate emoji embeddings as presented by Ben Eisner, Tim Rocktäschel, Isabelle Augenstein, Matko

Miruna Pislar 17 Sep 03, 2022
A no-BS, dead-simple training visualizer for tf-keras

A no-BS, dead-simple training visualizer for tf-keras TrainingDashboard Plot inter-epoch and intra-epoch loss and metrics within a jupyter notebook wi

Vibhu Agrawal 3 May 28, 2021
Implementation supporting the ICCV 2017 paper "GANs for Biological Image Synthesis"

GANs for Biological Image Synthesis This codes implements the ICCV-2017 paper "GANs for Biological Image Synthesis". The paper and its supplementary m

Anton Osokin 95 Nov 25, 2022
Official PyTorch Implementation of Learning Architectures for Binary Networks

Learning Architectures for Binary Networks An Pytorch Implementation of the paper Learning Architectures for Binary Networks (BNAS) (ECCV 2020) If you

Computer Vision Lab. @ GIST 25 Jun 09, 2022
Exadel CompreFace is a free and open-source face recognition GitHub project

Exadel CompreFace is a leading free and open-source face recognition system Exadel CompreFace is a free and open-source face recognition service that

Exadel 2.6k Jan 04, 2023
Focal and Global Knowledge Distillation for Detectors

FGD Paper: Focal and Global Knowledge Distillation for Detectors Install MMDetection and MS COCO2017 Our codes are based on MMDetection. Please follow

Mesopotamia 261 Dec 23, 2022
ADB-IP-ROTATION - Use your mobile phone to gain a temporary IP address using ADB and data tethering

ADB IP ROTATE This an Python script based on Android Debug Bridge (adb) shell sc

Dor Bismuth 2 Jul 12, 2022
Meta Learning for Semi-Supervised Few-Shot Classification

few-shot-ssl-public Code for paper Meta-Learning for Semi-Supervised Few-Shot Classification. [arxiv] Dependencies cv2 numpy pandas python 2.7 / 3.5+

Mengye Ren 501 Jan 08, 2023
Detail-Preserving Transformer for Light Field Image Super-Resolution

DPT Official Pytorch implementation of the paper "Detail-Preserving Transformer for Light Field Image Super-Resolution" accepted by AAAI 2022 . Update

50 Jan 01, 2023
AdamW optimizer and cosine learning rate annealing with restarts

AdamW optimizer and cosine learning rate annealing with restarts This repository contains an implementation of AdamW optimization algorithm and cosine

Maksym Pyrozhok 133 Dec 20, 2022
Image Segmentation Evaluation

Image Segmentation Evaluation Martin Keršner, [email protected] Evaluation

Martin Kersner 273 Oct 28, 2022
ARKitScenes - A Diverse Real-World Dataset for 3D Indoor Scene Understanding Using Mobile RGB-D Data

ARKitScenes This repo accompanies the research paper, ARKitScenes - A Diverse Real-World Dataset for 3D Indoor Scene Understanding Using Mobile RGB-D

Apple 371 Jan 05, 2023
Direct Multi-view Multi-person 3D Human Pose Estimation

Implementation of NeurIPS-2021 paper: Direct Multi-view Multi-person 3D Human Pose Estimation [paper] [video-YouTube, video-Bilibili] [slides] This is

Sea AI Lab 251 Dec 30, 2022
Python implementation of Project Fluent

Project Fluent This is a collection of Python packages to use the Fluent localization system. python-fluent consists of these packages: fluent.syntax

Project Fluent 155 Dec 28, 2022
Companion code for the paper Theoretical characterization of uncertainty in high-dimensional linear classification

Companion code for the paper Theoretical characterization of uncertainty in high-dimensional linear classification Usage The required packages are lis

0 Feb 07, 2022
Python Library for learning (Structure and Parameter) and inference (Statistical and Causal) in Bayesian Networks.

pgmpy pgmpy is a python library for working with Probabilistic Graphical Models. Documentation and list of algorithms supported is at our official sit

pgmpy 2.2k Jan 03, 2023
Some tentative models that incorporate label propagation to graph neural networks for graph representation learning in nodes, links or graphs.

Some tentative models that incorporate label propagation to graph neural networks for graph representation learning in nodes, links or graphs.

zshicode 1 Nov 18, 2021
PyTorch implementation of the method described in the paper VoiceLoop: Voice Fitting and Synthesis via a Phonological Loop.

VoiceLoop PyTorch implementation of the method described in the paper VoiceLoop: Voice Fitting and Synthesis via a Phonological Loop. VoiceLoop is a n

Meta Archive 873 Dec 15, 2022
Implementation of Fast Transformer in Pytorch

Fast Transformer - Pytorch Implementation of Fast Transformer in Pytorch. This only work as an encoder. Yannic video AI Epiphany Install $ pip install

Phil Wang 167 Dec 27, 2022
Mip-NeRF: A Multiscale Representation for Anti-Aliasing Neural Radiance Fields.

This repository contains the code release for Mip-NeRF: A Multiscale Representation for Anti-Aliasing Neural Radiance Fields. This implementation is written in JAX, and is a fork of Google's JaxNeRF

Google 625 Dec 30, 2022