Efficient and Scalable Physics-Informed Deep Learning and Scientific Machine Learning on top of Tensorflow for multi-worker distributed computing

Overview

TensorDiffEq logo

Package Build Package Release pypi downloads python versions

Notice: Support for Python 3.6 will be dropped in v.0.2.1, please plan accordingly!

Efficient and Scalable Physics-Informed Deep Learning

Collocation-based PINN PDE solvers for prediction and discovery methods on top of Tensorflow 2.X for multi-worker distributed computing.

Use TensorDiffEq if you require:

  • A meshless PINN solver that can distribute over multiple workers (GPUs) for forward problems (inference) and inverse problems (discovery)
  • Scalable domains - Iterated solver construction allows for N-D spatio-temporal support
    • support for N-D spatial domains with no time element is included
  • Self-Adaptive Collocation methods for forward and inverse PINNs
  • Intuitive user interface allowing for explicit definitions of variable domains, boundary conditions, initial conditions, and strong-form PDEs

What makes TensorDiffEq different?

  • Completely open-source

  • Self-Adaptive Solvers for forward and inverse problems, leading to increased accuracy of the solution and stability in training, resulting in less overall training time

  • Multi-GPU distributed training for large or fine-grain spatio-temporal domains

  • Built on top of Tensorflow 2.0 for increased support in new functionality exclusive to recent TF releases, such as XLA support, autograph for efficent graph-building, and grappler support for graph optimization* - with no chance of the source code being sunset in a further Tensorflow version release

  • Intuitive interface - defining domains, BCs, ICs, and strong-form PDEs in "plain english"

*In development

If you use TensorDiffEq in your work, please cite it via:

@article{mcclenny2021tensordiffeq,
  title={TensorDiffEq: Scalable Multi-GPU Forward and Inverse Solvers for Physics Informed Neural Networks},
  author={McClenny, Levi D and Haile, Mulugeta A and Braga-Neto, Ulisses M},
  journal={arXiv preprint arXiv:2103.16034},
  year={2021}
}

Thanks to our additional contributors:

@marcelodallaqua, @ragusa, @emiliocoutinho

Comments
  • Latest version of package

    Latest version of package

    The examples in the doc use the latest code of master branch but the library on Pypi is still the version in May. Can you build the lib and update the version on Pypi?

    opened by devzhk 5
  • ADAM training on batches

    ADAM training on batches

    It is possible to define a batch size and this will be applied to the calculation of the residual loss function, in splitting the collocation points in batches during the training.

    opened by emiliocoutinho 3
  • Pull Request using PyCharm

    Pull Request using PyCharm

    Dear Levi,

    I tried to make a Pull Request on this repository using PyCharm, and I received the following message:

    Although you appear to have the correct authorization credentials, the tensordiffeq organization has enabled OAuth App access restrictions, meaning that data access to third-parties is limited. For more information on these restrictions, including how to whitelist this app, visit https://help.github.com/articles/restricting-access-to-your-organization-s-data/

    I would kindly ask you to authorize PyCharm to access your organization data to use the GUI to make future pull requests.

    Best Regards

    opened by emiliocoutinho 1
  • Update method def get_sizes of utils.py

    Update method def get_sizes of utils.py

    Fix bug on the method def get_sizes(layer_sizes) of utils.py. The method was only allowing neural nets with an identical number of nodes in each hidden layer. Which was making the L- BFGS optimization to crash.

    opened by marcelodallaqua 1
  • model.save ?

    model.save ?

    Sometimes, it's useful to save the model for later use. I couldn't find a .save method and pickle (and dill) didn't let me dump the object for later re-use. (example of error with pickle: Can't pickle local object 'make_gradient_clipnorm_fn..').

    Is it currently possible to save the model? Thanks!

    opened by ragusa 1
  • add model.save and model.load_model

    add model.save and model.load_model

    Add model.save and model.load_model to CollocationSolverND class ref #3

    Will be released in the next stable.

    currently this can be done by using the Keras integration via running model.u_model.save("path/to/file"). This change will allow a direct save by calling model.save() on the CollocationSolverND class. Same with load_model().

    The docs will be updated to reflect this change.

    opened by levimcclenny 0
  • 2D Burgers Equation

    2D Burgers Equation

    Hello @levimcclenny and thanks for recommending this library!

    I have modified the 1D burger example to be in 2D, but I did not get good comparison results. Any suggestions?

    import math
    import scipy.io
    import tensordiffeq as tdq
    from tensordiffeq.boundaries import *
    from tensordiffeq.models import CollocationSolverND
    
    Domain = DomainND(["x", "y", "t"], time_var='t')
    
    Domain.add("x", [-1.0, 1.0], 256)
    Domain.add("y", [-1.0, 1.0], 256)
    Domain.add("t", [0.0, 1.0], 100)
    
    N_f = 10000
    Domain.generate_collocation_points(N_f)
    
    
    def func_ic(x,y):
        p =2
        q =1
        return np.sin (p * math.pi * x) * np.sin(q * math.pi * y)
        
    
    init = IC(Domain, [func_ic], var=[['x','y']])
    upper_x = dirichletBC(Domain, val=0.0, var='x', target="upper")
    lower_x = dirichletBC(Domain, val=0.0, var='x', target="lower")
    upper_y = dirichletBC(Domain, val=0.0, var='y', target="upper")
    lower_y = dirichletBC(Domain, val=0.0, var='y', target="lower")
    
    BCs = [init, upper_x, lower_x, upper_y, lower_y]
    
    
    def f_model(u_model, x, y, t):
        u = u_model(tf.concat([x, y, t], 1))
        u_x = tf.gradients(u, x)
        u_xx = tf.gradients(u_x, x)
        u_y = tf.gradients(u, y)
        u_yy = tf.gradients(u_y, y)
        u_t = tf.gradients(u, t)
        f_u = u_t + u * (u_x + u_y) - (0.01 / tf.constant(math.pi)) * (u_xx+u_yy)
        return f_u
    
    
    layer_sizes = [3, 20, 20, 20, 20, 20, 20, 20, 20, 1]
    
    model = CollocationSolverND()
    model.compile(layer_sizes, f_model, Domain, BCs)
    
    # to reproduce results from Raissi and the SA-PINNs paper, train for 10k newton and 10k adam
    model.fit(tf_iter=10000, newton_iter=10000)
    
    model.save("burger2D_Training_Model")
    #model.load("burger2D_Training_Model")
    
    #######################################################
    #################### PLOTTING #########################
    #######################################################
    
    data = np.load('py-pde_2D_burger_data.npz')
    
    Exact = data['u_output']
    Exact_u = np.real(Exact)
    
    x = Domain.domaindict[0]['xlinspace']
    y = Domain.domaindict[1]['ylinspace']
    t = Domain.domaindict[2]["tlinspace"]
    
    X, Y, T = np.meshgrid(x, y, t)
    
    X_star = np.hstack((X.flatten()[:, None], Y.flatten()[:, None], T.flatten()[:, None]))
    u_star = Exact_u.T.flatten()[:, None]
    
    u_pred, f_u_pred = model.predict(X_star)
    
    error_u = tdq.helpers.find_L2_error(u_pred, u_star)
    print('Error u: %e' % (error_u))
    
    lb = np.array([-1.0, -1.0, 0.0])
    ub = np.array([1.0, 1.0, 1])
    
    tdq.plotting.plot_solution_domain2D(model, [x, y, t], ub=ub, lb=lb, Exact_u=Exact_u.T)
    
    
    Screen Shot 2022-03-04 at 11 15 31 PM Screen Shot 2022-03-04 at 11 15 44 PM Screen Shot 2022-03-04 at 11 15 18 PM
    opened by engsbk 3
  • 2D Wave Equation

    2D Wave Equation

    Thank you for the great contribution!

    I'm trying to extend the 1D example problems to 2D, but I want to make sure my changes are in the correct place:

    1. Dimension variables. I changed them like so:

    Domain = DomainND(["x", "y", "t"], time_var='t')

    Domain.add("x", [0.0, 5.0], 100) Domain.add("y", [0.0, 5.0], 100) Domain.add("t", [0.0, 5.0], 100)

    1. My IC is zero, but for the BCs I'm not sure how to define the left and right borders, please let me know if my implementation is correct:
    
    def func_ic(x,y):
        return 0
    
    init = IC(Domain, [func_ic], var=[['x','y']])
    upper_x = dirichletBC(Domain, val=0.0, var='x', target="upper")
    lower_x = dirichletBC(Domain, val=0.0, var='x', target="lower")
    upper_y = dirichletBC(Domain, val=0.0, var='y', target="upper")
    lower_y = dirichletBC(Domain, val=0.0, var='y', target="lower")
            
    BCs = [init, upper_x, lower_x, upper_y, lower_y]
    

    All of my BCs and ICs are zero. And my equation has a (forcing) time-dependent source term as such:

    
    def f_model(u_model, x, y, t):
        c = tf.constant(1, dtype = tf.float32)
        Amp = tf.constant(2, dtype = tf.float32)
        freq = tf.constant(1, dtype = tf.float32)
        sigma = tf.constant(0.2, dtype = tf.float32)
    
        source_x = tf.constant(0.5, dtype = tf.float32)
        source_y = tf.constant(2.5, dtype = tf.float32)
    
        GP = Amp * tf.exp(-0.5*( ((x-source_x)/sigma)**2 + ((y-source_y)/sigma)**2 ))
        
        S = GP * tf.sin( 2 * tf.constant(math.pi)  * freq * t )
        u = u_model(tf.concat([x,y,t], 1))
        u_x = tf.gradients(u,x)
        u_xx = tf.gradients(u_x, x)
        u_y = tf.gradients(u,y)
        u_yy = tf.gradients(u_y, y)
        u_t = tf.gradients(u,t)
        u_tt = tf.gradients(u_t,t)
    
    
        f_u = u_xx + u_yy - (1/c**2) * u_tt + S
        
        return f_u
    

    Please advise.

    Looking forward to your reply!

    opened by engsbk 13
  • Reproducibility

    Reproducibility

    Dear @levimcclenny,

    Have you considered in adapt TensorDiffEq to be deterministic? In the way the code is implemented, we can find two sources of randomness:

    • The function Domain.generate_collocation_points has a random number generation
    • The TensorFlow training procedure (weights initialization and possibility of the use o random batches)

    Both sources of randomness can be solved with not much effort. We can define a random state for the first one that can be passed to the function Domain.generate_collocation_points. For the second, we can use the implementation provided on Framework Determinism. I have used the procedures suggested by this code, and the results of TensorFlow are always reproducible (CPU or GPU, serial or distributed).

    If you want, I can implement these two features.

    Best Regards

    opened by emiliocoutinho 3
Releases(v0.2.0)
Owner
tensordiffeq
Scalable PINN solvers for PDE Inference and Discovery
tensordiffeq
Finding Biological Plausibility for Adversarially Robust Features via Metameric Tasks

Adversarially-Robust-Periphery Code + Data from the paper "Finding Biological Plausibility for Adversarially Robust Features via Metameric Tasks" by A

Anne Harrington 2 Feb 07, 2022
Dataset Cartography: Mapping and Diagnosing Datasets with Training Dynamics

Dataset Cartography Code for the paper Dataset Cartography: Mapping and Diagnosing Datasets with Training Dynamics at EMNLP 2020. This repository cont

AI2 125 Dec 22, 2022
Stream images from a connected camera over MQTT, view using Streamlit, record to file and sqlite

mqtt-camera-streamer Summary: Publish frames from a connected camera or MJPEG/RTSP stream to an MQTT topic, and view the feed in a browser on another

Robin Cole 183 Dec 16, 2022
Atomistic Line Graph Neural Network

Table of Contents Introduction Installation Examples Pre-trained models Quick start using colab JARVIS-ALIGNN webapp Peformances on a few datasets Use

National Institute of Standards and Technology 91 Dec 30, 2022
Usable Implementation of "Bootstrap Your Own Latent" self-supervised learning, from Deepmind, in Pytorch

Bootstrap Your Own Latent (BYOL), in Pytorch Practical implementation of an astoundingly simple method for self-supervised learning that achieves a ne

Phil Wang 1.4k Dec 29, 2022
Data visualization app for H&M competition in kaggle

handm_data_visualize_app Data visualization app by streamlit for H&M competition in kaggle. competition page: https://www.kaggle.com/competitions/h-an

Kyohei Uto 12 Apr 30, 2022
Deep Learning with PyTorch made easy 🚀 !

Deep Learning with PyTorch made easy 🚀 ! Carefree? carefree-learn aims to provide CAREFREE usages for both users and developers. It also provides a c

381 Dec 22, 2022
gtfs2vec - Learning GTFS Embeddings for comparing PublicTransport Offer in Microregions

gtfs2vec This is a companion repository for a gtfs2vec - Learning GTFS Embeddings for comparing PublicTransport Offer in Microregions publication. Vis

Politechnika Wrocławska - repozytorium dla informatyków 5 Oct 10, 2022
An implementation of RetinaNet in PyTorch.

RetinaNet An implementation of RetinaNet in PyTorch. Installation Training COCO 2017 Pascal VOC Custom Dataset Evaluation Todo Credits Installation In

Conner Vercellino 297 Jan 04, 2023
An introduction to satellite image analysis using Python + OpenCV and JavaScript + Google Earth Engine

A Gentle Introduction to Satellite Image Processing Welcome to this introductory course on Satellite Image Analysis! Satellite imagery has become a pr

Edward Oughton 32 Jan 03, 2023
A PyTorch implementation of ViTGAN based on paper ViTGAN: Training GANs with Vision Transformers.

ViTGAN: Training GANs with Vision Transformers A PyTorch implementation of ViTGAN based on paper ViTGAN: Training GANs with Vision Transformers. Refer

Hong-Jia Chen 127 Dec 23, 2022
Open Source Light Field Toolbox for Super-Resolution

BasicLFSR BasicLFSR is an open-source and easy-to-use Light Field (LF) image Super-Ressolution (SR) toolbox based on PyTorch, including a collection o

Squidward 50 Nov 18, 2022
Real-time LIDAR-based Urban Road and Sidewalk detection for Autonomous Vehicles 🚗

urban_road_filter: a real-time LIDAR-based urban road and sidewalk detection algorithm for autonomous vehicles Dependency ROS (tested with Kinetic and

JKK - Vehicle Industry Research Center 180 Dec 12, 2022
Code and dataset for AAAI 2021 paper FixMyPose: Pose Correctional Describing and Retrieval Hyounghun Kim, Abhay Zala, Graham Burri, Mohit Bansal.

FixMyPose / फिक्समाइपोज़ Code and dataset for AAAI 2021 paper "FixMyPose: Pose Correctional Describing and Retrieval" Hyounghun Kim*, Abhay Zala*, Grah

4 Sep 19, 2022
League of Legends Reinforcement Learning Environment (LoLRLE) multiple training scenarios using PPO.

League of Legends Reinforcement Learning Environment (LoLRLE) About This repo contains code to train an agent to play league of legends in a distribut

2 Aug 19, 2022
This Repo is the official CUDA implementation of ICCV 2019 Oral paper for CARAFE: Content-Aware ReAssembly of FEatures

Introduction This Repo is the official CUDA implementation of ICCV 2019 Oral paper for CARAFE: Content-Aware ReAssembly of FEatures. @inproceedings{Wa

Jiaqi Wang 42 Jan 07, 2023
Unofficial implementation of Proxy Anchor Loss for Deep Metric Learning

Proxy Anchor Loss for Deep Metric Learning Unofficial pytorch, tensorflow and mxnet implementations of Proxy Anchor Loss for Deep Metric Learning. Not

Geonmo Gu 3 Jun 09, 2021
My solutions for Stanford University course CS224W: Machine Learning with Graphs Fall 2021 colabs (GNN, GAT, GraphSAGE, GCN)

machine-learning-with-graphs My solutions for Stanford University course CS224W: Machine Learning with Graphs Fall 2021 colabs Course materials can be

Marko Njegomir 7 Dec 14, 2022
HomeAssitant custom integration for dyson

HomeAssistant Custom Integration for Dyson This custom integration is still under development. This is a HA custom integration for dyson. There are se

Xiaonan Shen 232 Dec 31, 2022
Le dataset des images du projet d'IA de 2021

face-mask-dataset-ilc-2021 Le dataset des images du projet d'IA de 2021, Indiquez vos id git dans la issue pour les droits TL;DR: Choisir 200 images J

7 Nov 15, 2021