Implementation of ECCV20 paper: the devil is in classification: a simple framework for long-tail object detection and instance segmentation

Overview

Implementation of our ECCV 2020 paper The Devil is in Classification: A Simple Framework for Long-tail Instance Segmentation

This repo contains code of Simcal, which won the LVIS 2019 challenge. Note that it can achieve much higher tail class performance by simply change the calibration head from 2-layer fc with random initialization (2fc_rand) to 3-layer fc initialized from original model with standard training (3fc_ft), refer to paper for details. But we did not notice this during the challenge submission and used 2fc_rand, so much higher result of tail clasees on test set is expected with SimCal 3fc_ft.

License

This project is released under the Apache 2.0 license.

TODO

  • remove and clean redundant and commented codes
  • update script for installing with pytorch 1.1.0 to have faster calibration training
  • merge mask r-cnn and htc model test file, add htc calibration code, add Props-GT experiment code

Pull requests to improve the codebase or fix bugs are welcome

Installation

Simcal is based on mmdetection, Please refer to INSTALL.md for installation and dataset preparation.

Or run the following installation script:

#!/usr/bin/env bash
conda create -n simcal_mmdet python=3.7
source ~/anaconda3/etc/profile.d/conda.sh
conda init bash
conda activate simcal_mmdet
echo "python path"
which python
conda install pytorch==1.2.0 torchvision==0.4.0 cudatoolkit=9.2 -c pytorch
pip install cython==0.29.12 mmcv==0.2.16 matplotlib terminaltables
pip install "git+https://github.com/cocodataset/cocoapi.git#subdirectory=PythonAPI"
pip install opencv-python-headless
pip install Pillow==6.1
pip install numpy==1.17.1 --no-deps
git clone https://github.com/twangnh/SimCal
cd SimCal
pip install -v -e .

To also get instance-centric AP results, please do not install official LVIS api or cocoapi with pip, as we have modified it with a local copy in the repository to additionally calculate instance centric bin AP results (i.e., AP1,AP2,AP3,AP4). We may create a pull request to update the official APIs for this purpose later.

Dataset preparation

For LVIS dataset, please arrange the data as:

SimCal
├── configs
├── data
│   ├── LVIS
│   │   ├── lvis_v0.5_train.json.zip
│   │   ├── lvis_v0.5_val.json.zip
│   │   ├── images
│   │   │   ├── train2017
│   │   │   ├── val2017

note for LVIS images, you can just create a softlink for the val2017 to point to COCO val2017

For COCO-LT (our sampled long-tail version of COCO, refer to paper for details), please download the sampled annotation file train_coco2017_LT_sampled.json and put it at data/coco/annotations/

Training (Calibration)

Calibration uses multi-gpu training to perform bi-level proposal sampling, to run calibration on a model, e.g.,

python tools/train.py configs/simcal/calibration/mask_rcnn_r50_fpn_1x_lvis_agnostic.py --use_model 3fc_ft --exp_prefix xxx --gpus 4/8

will use 3fc_ft head as described in the paper and save calibrated head ckpt with exp_prefix

Pre-trained models and calibrated heads

All the calibrated models reported in the paper are released for reproduction and future research:

Model Link
r50-ag epoch-12 Googledrive
calibrated cls head Googledrive
Model Link
r50 epoch-12 Googledrive
calibrated cls head Googledrive
Model Link
r50-ag-coco-lt epoch-12 Googledrive
calibrated cls head Googledrive
Model Link
htc-x101 epoch-20 Googledrive
calhead-stege0 Googledrive
calhead-stege1 Googledrive
calhead-stege2 Googledrive

To evaluate and reproduce the paper result models, please first download the model checkpoints and arrange them as:

SimCal
├── configs
├── work_dirs
    |-- htc
    |   |-- 3fc_ft_stage0.pth
    |   |-- 3fc_ft_stage1.pth
    |   |-- 3fc_ft_stage2.pth
    |   `-- epoch_20.pth
    |-- mask_rcnn_r50_fpn_1x_cocolt_agnostic
    |   |-- 3fc_ft.pth
    |   `-- epoch_12.pth
    |-- mask_rcnn_r50_fpn_1x_lvis_agnostic
    |   |-- 3fc_ft.pth
    |   `-- epoch_12.pth
    `-- mask_rcnn_r50_fpn_1x_lvis_clswise
        |-- 3fc_ft_epoch.pth
        |-- 3fc_ft.pth
        `-- epoch_12.pth

Test with pretrained models and calibrated heads

mrcnn on lvis, paper result:

mrcnn on lvis paper result

Test LVIS r50-ag model (use --eval bbox for box result)

./tools/dist_test.sh configs/simcal/calibration/mask_rcnn_r50_fpn_1x_lvis_agnostic.py 8 --cal_head 3fc_ft --out ./temp.pkl --eval segm

bin 0_10 AP: 0.13286122428874017
bin 10_100 AP: 0.23243947868384135
bin 100_1000 AP: 0.20696891455408
bin 1000_* AP: 0.2615438157753328
bAP 0.20845335832549858
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=300 catIds=all] = 0.222
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=300 catIds=all] = 0.354
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=300 catIds=all] = 0.236
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=     s | maxDets=300 catIds=all] = 0.154
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=     m | maxDets=300 catIds=all] = 0.298
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=     l | maxDets=300 catIds=all] = 0.373
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=300 catIds=  r] = 0.182
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=300 catIds=  c] = 0.215
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=300 catIds=  f] = 0.247
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 catIds=all] = 0.315
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=     s | maxDets=300 catIds=all] = 0.216
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=     m | maxDets=300 catIds=all] = 0.382
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=     l | maxDets=300 catIds=all] = 0.453

Test LVIS r50 model (use --eval bbox for box result)

./tools/dist_test.sh configs/simcal/calibration/mask_rcnn_r50_fpn_1x_lvis_clswise.py 8 --cal_head 3fc_ft --out ./temp.pkl --eval segm

bin 0_10 AP: 0.10187003036862649
bin 10_100 AP: 0.23907519508889202
bin 100_1000 AP: 0.22468457541750592
bin 1000_* AP: 0.28687985066050825
bAP 0.21312741288388318
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=300 catIds=all] = 0.234
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=300 catIds=all] = 0.375
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=300 catIds=all] = 0.245
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=     s | maxDets=300 catIds=all] = 0.167
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=     m | maxDets=300 catIds=all] = 0.316
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=     l | maxDets=300 catIds=all] = 0.405
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=300 catIds=  r] = 0.164
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=300 catIds=  c] = 0.225
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=300 catIds=  f] = 0.272
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 catIds=all] = 0.331
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=     s | maxDets=300 catIds=all] = 0.233
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=     m | maxDets=300 catIds=all] = 0.399
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=     l | maxDets=300 catIds=all] = 0.481

mrcnn on cocolt, paper result:

mrcnn on lvis paper result

Test COCO-LT r50-ag model (use --eval bbox for box result)

./tools/dist_test.sh configs/simcal/calibration/mask_rcnn_r50_fpn_1x_lvis_agnostic.py 8 --cal_head 3fc_ft --out ./temp.pkl --eval segm

 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.246
bin ins nums: [4, 24, 32, 20]
bins ap: [0.1451797625472811, 0.1796142130031695, 0.27337165679657216, 0.3027201541441131]
eAP : 0.22522144662278398
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.412
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.257
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.133
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.278
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.334
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.239
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.424
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.450
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.269
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.481
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.586

htc on lvis, paper result:

mrcnn on lvis paper result

Test HTC model (use --eval bbox for box result)

./tools/dist_test_htc.sh configs/simcal/calibration/htc_lvis_31d9.py 8 --out ./temp2.pkl --eval segm

bin 0_10 AP: 0.18796762487467375
bin 10_100 AP: 0.34907335159564473
bin 100_1000 AP: 0.3304618611020927
bin 1000_* AP: 0.3674197862439286
bAP 0.30873065595408494
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=300 catIds=all] = 0.334
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=300 catIds=all] = 0.490
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=300 catIds=all] = 0.357
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=     s | maxDets=300 catIds=all] = 0.228
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=     m | maxDets=300 catIds=all] = 0.422
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=     l | maxDets=300 catIds=all] = 0.565
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=300 catIds=  r] = 0.247
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=300 catIds=  c] = 0.337
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=300 catIds=  f] = 0.364
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 catIds=all] = 0.428
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=     s | maxDets=300 catIds=all] = 0.300
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=     m | maxDets=300 catIds=all] = 0.506
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=     l | maxDets=300 catIds=all] = 0.631

note testing with LVIS can be significantly slower as max_det is 300 and det confidence threshold is 0.0

Props-GT experiment

By Props-GT experiment, we would like to emphasize that there is still large room of improvement along the direction of improving object proposal classification.

Balanced Group Softmax

We also encourage you to check our following up work Balanced Group Softmax after the LVIS challenge, (accepted by CVPR20 oral). It employs a more specific calibration approach with redesigned the softmax function, the calibration is more effective without dual-head inference, and only calibrates last layer of classification head. Code is available at https://github.com/FishYuLi/BalancedGroupSoftmax

Citation

Please consider to cite our ECCV20 paper:

@article{wang2020devil,
  title={The Devil is in Classification: A Simple Framework for Long-tail Instance Segmentation},
  author={Wang, Tao and Li, Yu and Kang, Bingyi and Li, Junnan and Liew, Junhao and Tang, Sheng and Hoi, Steven and Feng, Jiashi},
  journal={arXiv preprint arXiv:2007.11978},
  year={2020}
}

tech report for LVIS challenge 2019 at ICCV19 (Yu Li and Tao Wang have equal contribution for the LVIS challenge):

@article{wang2019classification,
  title={Classification Calibration for Long-tail Instance Segmentation},
  author={Wang, Tao and Li, Yu and Kang, Bingyi and Li, Junnan and Liew, Jun Hao and Tang, Sheng and Hoi, Steven and Feng, Jiashi},
  journal={arXiv preprint arXiv:1910.13081},
  year={2019}
}

Our following work Group Softmax at CVPR20 (oral):

@inproceedings{li2020overcoming,
  title={Overcoming Classifier Imbalance for Long-Tail Object Detection With Balanced Group Softmax},
  author={Li, Yu and Wang, Tao and Kang, Bingyi and Tang, Sheng and Wang, Chunfeng and Li, Jintao and Feng, Jiashi},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={10991--11000},
  year={2020}
}
Owner
twang
make things work
twang
a spacial-temporal pattern detection system for home automation

Argos a spacial-temporal pattern detection system for home automation. Based on OpenCV and Tensorflow, can run on raspberry pi and notify HomeAssistan

Angad Singh 133 Jan 05, 2023
113 Nov 28, 2022
Deeper DCGAN with AE stabilization

AEGeAN Deeper DCGAN with AE stabilization Parallel training of generative adversarial network as an autoencoder with dedicated losses for each stage.

Tyler Kvochick 36 Feb 17, 2022
Model parallel transformers in Jax and Haiku

Mesh Transformer Jax A haiku library using the new(ly documented) xmap operator in Jax for model parallelism of transformers. See enwik8_example.py fo

Ben Wang 4.8k Jan 01, 2023
QuALITY: Question Answering with Long Input Texts, Yes!

QuALITY: Question Answering with Long Input Texts, Yes! Authors: Richard Yuanzhe Pang,* Alicia Parrish,* Nitish Joshi,* Nikita Nangia, Jason Phang, An

ML² AT CILVR 61 Jan 02, 2023
Jaxtorch (a jax nn library)

Jaxtorch (a jax nn library) This is my jax based nn library. I created this because I was annoyed by the complexity and 'magic'-ness of the popular ja

nshepperd 17 Dec 08, 2022
PEPit is a package enabling computer-assisted worst-case analyses of first-order optimization methods.

PEPit: Performance Estimation in Python This open source Python library provides a generic way to use PEP framework in Python. Performance estimation

Baptiste 53 Nov 16, 2022
Image classification for projects and researches

This is a tool to help you quickly solve classification problems including: data analysis, training, report results and model explanation.

Nguyễn Trường Lâu 2 Dec 27, 2021
Human Activity Recognition example using TensorFlow on smartphone sensors dataset and an LSTM RNN. Classifying the type of movement amongst six activity categories - Guillaume Chevalier

LSTMs for Human Activity Recognition Human Activity Recognition (HAR) using smartphones dataset and an LSTM RNN. Classifying the type of movement amon

Guillaume Chevalier 3.1k Dec 30, 2022
Existing Literature about Machine Unlearning

Machine Unlearning Papers 2021 Brophy and Lowd. Machine Unlearning for Random Forests. In ICML 2021. Bourtoule et al. Machine Unlearning. In IEEE Symp

Jonathan Brophy 213 Jan 08, 2023
Runtime type annotations for the shape, dtype etc. of PyTorch Tensors.

torchtyping Type annotations for a tensor's shape, dtype, names, ... Turn this: def batch_outer_product(x: torch.Tensor, y: torch.Tensor) - torch.Ten

Patrick Kidger 1.2k Jan 03, 2023
The code of paper 'Learning to Aggregate and Personalize 3D Face from In-the-Wild Photo Collection'

Learning to Aggregate and Personalize 3D Face from In-the-Wild Photo Collection Pytorch implemetation of paper 'Learning to Aggregate and Personalize

Tencent YouTu Research 136 Dec 29, 2022
Revisiting, benchmarking, and refining Heterogeneous Graph Neural Networks.

Heterogeneous Graph Benchmark Revisiting, benchmarking, and refining Heterogeneous Graph Neural Networks. Roadmap We organize our repo by task, and on

THUDM 176 Dec 17, 2022
DANet for Tabular data classification/ regression.

Deep Abstract Networks A pyTorch implementation for AAAI-2022 paper DANets: Deep Abstract Networks for Tabular Data Classification and Regression. Bri

Ronnie Rocket 55 Sep 14, 2022
The AWS Certified SysOps Administrator

The AWS Certified SysOps Administrator – Associate (SOA-C02) exam is intended for system administrators in a cloud operations role who have at least 1 year of hands-on experience with deployment, man

Aiden Pearce 32 Dec 11, 2022
Official implementation of Deep Burst Super-Resolution

Deep-Burst-SR Official implementation of Deep Burst Super-Resolution Publication: Deep Burst Super-Resolution. Goutam Bhat, Martin Danelljan, Luc Van

Goutam Bhat 113 Dec 19, 2022
Weight estimation in CT by multi atlas techniques

maweight A Python package for multi-atlas based weight estimation for CT images, including segmentation by registration, feature extraction and model

György Kovács 0 Dec 24, 2021
General purpose GPU compute framework for cross vendor graphics cards (AMD, Qualcomm, NVIDIA & friends)

General purpose GPU compute framework for cross vendor graphics cards (AMD, Qualcomm, NVIDIA & friends). Blazing fast, mobile-enabled, asynchronous and optimized for advanced GPU data processing usec

The Kompute Project 1k Jan 06, 2023
Personal implementation of paper "Approximate Nearest Neighbor Negative Contrastive Learning for Dense Text Retrieval"

Approximate Nearest Neighbor Negative Contrastive Learning for Dense Text Retrieval This repo provides personal implementation of paper Approximate Ne

John 8 Oct 07, 2022
code from "Tensor decomposition of higher-order correlations by nonlinear Hebbian plasticity"

Code associated with the paper "Tensor decomposition of higher-order correlations by nonlinear Hebbian learning," Ocker & Buice, Neurips 2021. "plot_f

Gabriel Koch Ocker 4 Oct 16, 2022