Codes for our IJCAI21 paper: Dialogue Discourse-Aware Graph Model and Data Augmentation for Meeting Summarization

Related tags

Deep LearningDDAMS
Overview

DDAMS

This is the pytorch code for our IJCAI 2021 paper Dialogue Discourse-Aware Graph Model and Data Augmentation for Meeting Summarization [Arxiv Preprint].

Requirements

  • We use Conda python 3.7 and strongly recommend that you create a new environment: conda create -n ddams python=3.7.
  • Run the following command: pip install -r requirements.txt.

Data

You can download data here, put the data under the project dir DDAMS/data/xxx.

  • data/ami
    • data/ami/ami: preprocessed meeting data
    • data/ami/ami_qg: pseudo summarization data.
    • data/ami/ami_reference: golden reference for test file.
  • data/icsi
    • data/icsi/icsi: preprocessed meeting data
    • data/icsi/icsi_qg: pseudo summarization data.
    • data/icsi/icsi_reference: golden reference for test file.
  • data/glove: pre-trained word embedding glove.6B.300d.txt.

Reproduce Results

You can follow the following steps to reproduce the best results in our paper.

download checkpoints

Download checkpoints here. Put the checkpoints, including AMI.pt and ICSI.pt, under the project dir DDAMS/models/xx.pt.

translate

Produce final summaries.

For AMI, we can get summaries/ami_summary.txt.

CUDA_VISIBLE_DEVICES=X python translate.py -batch_size 1 \
               -src data/ami/ami/test.src \
               -tgt data/ami/ami/test.tgt \
               -seg data/ami/ami/test.seg \
               -speaker data/ami/ami/test.speaker \
               -relation data/ami/ami/test.relation \
               -beam_size 10 \
               -share_vocab \
               -dynamic_dict \
               -replace_unk \
               -model models/AMI.pt \
               -output summaries/ami_summary.txt \
               -block_ngram_repeat 3 \
               -gpu 0 \
               -min_length 280 \
               -max_length 450

For ICSI, we can get summaries/icsi_summary.txt.

CUDA_VISIBLE_DEVICES=x python translate.py -batch_size 1 \
               -src data/icsi/icsi/test.src \
               -seg data/icsi/icsi/test.seg \
               -speaker data/icsi/icsi/test.speaker \
               -relation data/icsi/icsi/test.relation \
               -beam_size 10 \
               -share_vocab \
               -dynamic_dict \
               -replace_unk \
               -model models/ICSI.pt \
               -output summaries/icsi_summary.txt \
               -block_ngram_repeat 3 \
               -gpu 0 \
               -min_length 400 \
               -max_length 550

remove tags

<t> and </t> will raise errors for ROUGE test. So we should first remove them. (following OpenNMT)

sed -i 's/ <\/t>//g' summaries/ami_summary.txt
sed -i 's/<t> //g' summaries/ami_summary.txt
sed -i 's/ <\/t>//g' summaries/icsi_summary.txt
sed -i 's/<t> //g' summaries/icsi_summary.txt

test rouge score

  • Change pyrouge.Rouge155() to your local path.

Output format >> ROUGE(1/2/L): xx.xx-xx.xx-xx.xx

python test_rouge.py -c summaries/ami_summary.txt
python test_rouge_icsi.py -c summaries/icsi_summary.txt

ROUGE score

You will get following ROUGE scores.

ROUGE-1 ROUGE-2 ROUGE-L
AMI 53.15 22.32 25.67
ICSI 40.41 11.02 19.18

From Scratch

For AMI

Preprocess

(1) Preprocess AMI dataset.

python preprocess.py -train_src data/ami/ami/train.src \
                     -train_tgt data/ami/ami/train.tgt \
                     -train_seg data/ami/ami/train.seg \
                     -train_speaker data/ami/ami/train.speaker \
                     -train_relation data/ami/ami/train.relation \
                     -valid_src data/ami/ami/valid.src \
                     -valid_tgt data/ami/ami/valid.tgt \
                     -valid_seg data/ami/ami/valid.seg \
                     -valid_speaker data/ami/ami/valid.speaker \
                     -valid_relation data/ami/ami/valid.relation \
                     -save_data data/ami/AMI \
                     -dynamic_dict \
                     -share_vocab \
                     -lower \
                     -overwrite

(2) Create pre-trained word embeddings.

python embeddings_to_torch.py -emb_file_both data/glove/glove.6B.300d.txt \
-dict_file data/ami/AMI.vocab.pt \
-output_file data/ami/ami_embeddings

(3) Preprocess pseudo summarization dataset.

python preprocess.py -train_src data/ami/ami_qg/train.src \
                     -train_tgt data/ami/ami_qg/train.tgt \
                     -train_seg data/ami/ami_qg/train.seg \
                     -train_speaker data/ami/ami_qg/train.speaker \
                     -train_relation data/ami/ami_qg/train.relation \
                     -save_data data/ami/AMIQG \
                     -lower \
                     -overwrite \
                     -shard_size 500 \
                     -dynamic_dict \
                     -share_vocab

Train

(1) we first pre-train our DDAMS on the pseudo summarization dataset.

  • run the following command to save config file (-save_config).
  • remove -save_config and rerun the command to start the training process.
CUDA_VISIBLE_DEVICES=X python train.py -save_model ami_qg_pretrain/AMI_qg\
           -data data/ami/AMIQG \
           -speaker_type ami \
           -batch_size 64 \
           -learning_rate 0.001 \
           -share_embeddings \
           -share_decoder_embeddings \
           -copy_attn \
           -reuse_copy_attn \
           -report_every 30 \
           -encoder_type hier3 \
           -global_attention general \
           -save_checkpoint_steps 500 \
           -start_decay_steps 1500 \
           -pre_word_vecs_enc data/ami/ami_embeddings.enc.pt \
           -pre_word_vecs_dec data/ami/ami_embeddings.dec.pt \
           -log_file logs/ami_qg_pretrain.txt \
           -save_config logs/ami_qg_pretrain.txt

(2) fine-tuning on AMI.

CUDA_VISIBLE_DEVICES=X python train.py -save_model ami_final/AMI \
           -data data/ami/AMI \
           -speaker_type ami \
           -train_from ami_qg_pretrain/xxx.pt  \
           -reset_optim all \
           -batch_size 1 \
           -learning_rate 0.0005 \
           -share_embeddings \
           -share_decoder_embeddings \
           -copy_attn \
           -reuse_copy_attn \
           -encoder_type hier3 \
           -global_attention general \
           -dropout 0.5 \
           -attention_dropout 0.5 \
           -start_decay_steps 500 \
           -decay_steps 500 \
           -log_file logs/ami_final.txt \
           -save_config logs/ami_final.txt

Translate

CUDA_VISIBLE_DEVICES=X python translate.py -batch_size 1 \
               -src data/ami/ami/test.src \
               -tgt data/ami/ami/test.tgt \
               -seg data/ami/ami/test.seg \
               -speaker data/ami/ami/test.speaker \
               -relation data/ami/ami/test.relation \
               -beam_size 10 \
               -share_vocab \
               -dynamic_dict \
               -replace_unk \
               -model xxx.pt \
               -output xxx.txt \
               -block_ngram_repeat 3 \
               -gpu 0 \
               -min_length 280 \
               -max_length 450

For ICSI

Preprocess

(1) Preprocess ICSI dataset.

python preprocess.py -train_src data/icsi/icsi/train.src \
                     -train_tgt data/icsi/icsi/train.tgt \
                     -train_seg data/icsi/icsi/train.seg \
                     -train_speaker data/icsi/icsi/train.speaker \
                     -train_relation data/icsi/icsi/train.relation \
                     -valid_src data/icsi/icsi/valid.src \
                     -valid_tgt data/icsi/icsi/valid.tgt \
                     -valid_seg data/icsi/icsi/valid.seg \
                     -valid_speaker data/icsi/icsi/valid.speaker \
                     -valid_relation data/icsi/icsi/valid.relation \
                     -save_data data/icsi/ICSI \
                     -src_seq_length 20000 \
                     -src_seq_length_trunc 20000 \
                     -tgt_seq_length 700 \
                     -tgt_seq_length_trunc 700 \
                     -dynamic_dict \
                     -share_vocab \
                     -lower \
                     -overwrite

(2) Create pre-trained word embeddings.

python embeddings_to_torch.py -emb_file_both data/glove/glove.6B.300d.txt \
-dict_file data/icsi/ICSI.vocab.pt \
-output_file data/icsi/icsi_embeddings

(3) Preprocess pseudo summarization dataset.

python preprocess.py -train_src data/icsi/icsi_qg/train.src \
                     -train_tgt data/icsi/icsi_qg/train.tgt \
                     -train_seg data/icsi/icsi_qg/train.seg \
                     -train_speaker data/icsi/icsi_qg/train.speaker \
                     -train_relation data/icsi/icsi_qg/train.relation \
                     -save_data data/icsi/ICSIQG \
                     -lower \
                     -overwrite \
                     -shard_size 500 \
                     -dynamic_dict \
                     -share_vocab

Train

(1) pre-training.

CUDA_VISIBLE_DEVICES=X python train.py -save_model icsi_qg_pretrain/ICSI \
           -data data/icsi/ICSIQG \
           -speaker_type icsi \
           -batch_size 64 \
           -learning_rate 0.001 \
           -share_embeddings \
           -share_decoder_embeddings \
           -copy_attn \
           -reuse_copy_attn \
           -report_every 30 \
           -encoder_type hier3 \
           -global_attention general \
           -save_checkpoint_steps 500 \
           -start_decay_steps 1500 \
           -pre_word_vecs_enc data/icsi/icsi_embeddings.enc.pt \
           -pre_word_vecs_dec data/icsi/icsi_embeddings.dec.pt \
           -log_file logs/icsi_qg_pretrain.txt \
           -save_config logs/icsi_qg_pretrain.txt

(2) fine-tuning on ICSI.

CUDA_VISIBLE_DEVICES=X python train.py -save_model icsi_final/ICSI \
           -data data/icsi/ICSI \
           -speaker_type icsi \
           -train_from icsi_qg_pretrain/xxx.pt  \
           -reset_optim all \
           -batch_size 1 \
           -learning_rate 0.0005 \
           -share_embeddings \
           -share_decoder_embeddings \
           -copy_attn \
           -reuse_copy_attn \
           -encoder_type hier3 \
           -global_attention general \
           -dropout 0.5 \
           -attention_dropout 0.5 \
           -start_decay_steps 1000 \
           -decay_steps 100 \
           -save_checkpoint_steps 50 \
           -valid_steps 50 \
           -log_file logs/icsi_final.txt \
           -save_config logs/icsi_final.txt

Translate

CUDA_VISIBLE_DEVICES=x python translate.py -batch_size 1 \
               -src data/icsi/icsi/test.src \
               -seg data/icsi/icsi/test.seg \
               -speaker data/icsi/icsi/test.speaker \
               -relation data/icsi/icsi/test.relation \
               -beam_size 10 \
               -share_vocab \
               -dynamic_dict \
               -replace_unk \
               -model xxx.pt \
               -output xxx.txt \
               -block_ngram_repeat 3 \
               -gpu 0 \
               -min_length 400 \
               -max_length 550

Test Rouge

(1) Before ROUGE test, we should first remove special tags: .

sed -i 's/ <\/t>//g' xxx.txt
sed -i 's/<t> //g' xxx.txt

(2) Test rouge

python test_rouge.py -c summaries/xxx.txt
python test_rouge_icsi.py -c summaries/xxx.txt
Owner
xcfeng
Ph.D. candidate working on Summarization.
xcfeng
NFT-Price-Prediction-CNN - Using visual feature extraction, prices of NFTs are predicted via CNN (Alexnet and Resnet) architectures.

NFT-Price-Prediction-CNN - Using visual feature extraction, prices of NFTs are predicted via CNN (Alexnet and Resnet) architectures.

5 Nov 03, 2022
Training Very Deep Neural Networks Without Skip-Connections

DiracNets v2 update (January 2018): The code was updated for DiracNets-v2 in which we removed NCReLU by adding per-channel a and b multipliers without

Sergey Zagoruyko 585 Oct 12, 2022
Research on Event Accumulator Settings for Event-Based SLAM

Research on Event Accumulator Settings for Event-Based SLAM This is the source code for paper "Research on Event Accumulator Settings for Event-Based

Robin Shaun 26 Dec 21, 2022
An open source bike computer based on Raspberry Pi Zero (W, WH) with GPS and ANT+. Including offline map and navigation.

Pi Zero Bikecomputer An open-source bike computer based on Raspberry Pi Zero (W, WH) with GPS and ANT+ https://github.com/hishizuka/pizero_bikecompute

hishizuka 264 Jan 02, 2023
ROMP: Monocular, One-stage, Regression of Multiple 3D People, ICCV21

Monocular, One-stage, Regression of Multiple 3D People ROMP, accepted by ICCV 2021, is a concise one-stage network for multi-person 3D mesh recovery f

Yu Sun 937 Jan 04, 2023
Implementation for our ICCV2021 paper: Internal Video Inpainting by Implicit Long-range Propagation

Implicit Internal Video Inpainting Implementation for our ICCV2021 paper: Internal Video Inpainting by Implicit Long-range Propagation paper | project

202 Dec 30, 2022
Fashion Landmark Estimation with HRNet

HRNet for Fashion Landmark Estimation (Modified from deep-high-resolution-net.pytorch) Introduction This code applies the HRNet (Deep High-Resolution

SVIP Lab 91 Dec 26, 2022
Cmsc11 arcade - Final Project for CMSC11

cmsc11_arcade Final Project for CMSC11 Developers: Limson, Mark Vincent PeƱafiel

Gregory 1 Jan 18, 2022
Given a 2D triangle mesh, we could randomly generate cloud points that fill in the triangle mesh

generate_cloud_points Given a 2D triangle mesh, we could randomly generate cloud points that fill in the triangle mesh. Run python disp_mesh.py Or you

Peng Yu 2 Dec 24, 2021
[ICCV'2021] Image Inpainting via Conditional Texture and Structure Dual Generation

[ICCV'2021] Image Inpainting via Conditional Texture and Structure Dual Generation

Xiefan Guo 122 Dec 11, 2022
QueryFuzz implements a metamorphic testing approach to test Datalog engines.

Datalog is a popular query language with applications in several domains. Like any complex piece of software, Datalog engines may contain bugs. The mo

34 Sep 10, 2022
Harmonic Memory Networks for Graph Completion

HMemNetworks Code and documentation for Harmonic Memory Networks, a series of models for compositionally assembling representations of graph elements

mlalisse 0 Oct 27, 2021
magiCARP: Contrastive Authoring+Reviewing Pretraining

magiCARP: Contrastive Authoring+Reviewing Pretraining Welcome to the magiCARP API, the test bed used by EleutherAI for performing text/text bi-encoder

EleutherAI 43 Dec 29, 2022
Dogs classification with Deep Metric Learning using some popular losses

Tsinghua Dogs classification with Deep Metric Learning 1. Introduction Tsinghua Dogs dataset Tsinghua Dogs is a fine-grained classification dataset fo

QuocThangNguyen 45 Nov 09, 2022
Official NumPy Implementation of Deep Networks from the Principle of Rate Reduction (2021)

Deep Networks from the Principle of Rate Reduction This repository is the official NumPy implementation of the paper Deep Networks from the Principle

Ryan Chan 49 Dec 16, 2022
Public Code for NIPS submission SimiGrad: Fine-Grained Adaptive Batching for Large ScaleTraining using Gradient Similarity Measurement

Public code for NIPS submission "SimiGrad: Fine-Grained Adaptive Batching for Large Scale Training using Gradient Similarity Measurement" This repo co

Heyang Qin 0 Oct 13, 2021
Pytorch code for "Text-Independent Speaker Verification Using 3D Convolutional Neural Networks".

:speaker: Deep Learning & 3D Convolutional Neural Networks for Speaker Verification

Amirsina Torfi 114 Dec 18, 2022
Several simple examples for popular neural network toolkits calling custom CUDA operators.

Neural Network CUDA Example Several simple examples for neural network toolkits (PyTorch, TensorFlow, etc.) calling custom CUDA operators. We provide

WeiYang 798 Jan 01, 2023
Preparation material for Dropbox interviews

Dropbox-Onsite-Interviews A guide for the Dropbox onsite interview! The Dropbox interview question bank is very small. The bank has been in a Chinese

386 Dec 31, 2022
The repository forked from NVlabs uses our data. (Differentiable rasterization applied to 3D model simplification tasks)

nvdiffmodeling [origin_code] Differentiable rasterization applied to 3D model simplification tasks, as described in the paper: Appearance-Driven Autom

Qiujie (Jay) Dong 2 Oct 31, 2022