A 3D sparse LBM solver implemented using Taichi

Overview

taichi_LBM3D

Background

Taichi_LBM3D is a 3D lattice Boltzmann solver with Multi-Relaxation-Time collision scheme and sparse storage structure implemented using Taichi programming language, which is designed for porous medium flow simulation. Taking advantage of Taichi's computing structure, Taichi_LBM3D can be employed on shared-memory multi-core CPUs or massively parallel GPUs (OpenGL and CUDA). The code is around 400 lines, extensible and intuitive to understand.

Installation

This solver is developed using Taichi programming language (a python embedded programming language), install Taichi is required, by python3 -m pip install taichi.

Pyevtk is required for export simualtion result for visualization in Paraview, install Pyevtk by pip install pyevtk

Usage

There are several place for users to modify to fit their problems:

set computing backend

First the computing backend should be specified by ti.init(arch=ti.cpu) using parallel CPU backend, or by ti.init(arch=ti.gpu) to use OpenGL or CUDA(is available) as computing backend

set input geometry

LBM uses uniform mesh, the geometry is import as a ASCII file with 0 and 1, where 0 represent fluid point and 1 represent solid point. They are stored in format:

for k in range(nz)
  for j in range(ny)
    for i in range(nx)
      geometry[i,j,k]

You can specify the input file at: solid_np = init_geo('./img_ftb131.txt')

For two phase solver, a two phase distribution input file is also requred. This file is composed of -1 and 1 representing phase 1 and 2 respectively

set geometry size

Set geometry input file size here: nx,ny,nz = 131,131,131

set external force

Set expernal force applied on the fluid here: fx,fy,fz = 0.0e-6,0.0,0.0

set boundary conditions

There are three boundary conditions used in this code: Periodic boundary condition, fix pressure boundary condition, and fix velocity boundary condition We use the left side of X direction as an example: bc_x_left, rho_bcxl, vx_bcxl, vy_bcxl, vz_bcxl = 1, 1.0, 0.0e-5, 0.0, 0.0 set boundary condition type in bc_x_left; 0=periodic boundary condition, 1 = fix pressure boundary condition, 2 = fix velocity boundary condition if bc_x_left == 1 is select, then the desired pressure on the left side of X direction need to be given in rho_bcxl if bc_x_left == 2 is select, then the desired velocity on the left side of X direction need to be given in vx_bcxl, vy_bcxl, vz_bcxl

The same rules applied to the other five sides

set viscosity

Viscosity is set in niu = 0.1 for single phase solver

niu_l = 0.05
niu_g = 0.2

for two phase solver, niu_l for liquid phase, niu_g for phase 2

Additional parameters for two phase solver
  • Contact angle of the solid surface can be specified in psi_solid = 0.7 this value is the cosine of the desired contact angle, so the value is between -1 and 1
  • Interfical tension of two phases is set in CapA = 0.005
  • Boundary condition for the phase setting: bc_psi_x_left, psi_x_left = 1, -1.0 bc_psi_x_left = 0 for periodic boundary for the phase field, 1 = constant phase field value boundary. If bc_psi_x_left is set as 1, then the next parameter is desired constant phase for this boundary: psi_x_left should be set as -1.0 or 1.0 for phase 1 or phase 2 respectively.

All the quantities are in lattice units

Examples (Direct Numerical Simulation)

Flow over a vehicle: inertia dominated

image image

Single phase flow in a sandstone (Sandstone geometry is build from Micro-CT images at 7.5 microns): viscous dominated

image

Urban air flow: inertia dominated

image

Two Phase flow: oil (non-wetting phase) into a ketton carbonate rock saturated with water (wetting phase): capillary dominated

Alt text

Authors

Jianhui Yang @yjhp1016 Liang Yang @ly16302

License

MIT

Owner
Jianhui Yang
Researcher in CFD, porous medium flow and data science
Jianhui Yang
MHFormer: Multi-Hypothesis Transformer for 3D Human Pose Estimation

MHFormer: Multi-Hypothesis Transformer for 3D Human Pose Estimation This repo is the official implementation of "MHFormer: Multi-Hypothesis Transforme

Vegetabird 281 Jan 07, 2023
This repo contains the implementation of YOLOv2 in Keras with Tensorflow backend.

Easy training on custom dataset. Various backends (MobileNet and SqueezeNet) supported. A YOLO demo to detect raccoon run entirely in brower is accessible at https://git.io/vF7vI (not on Windows).

Huynh Ngoc Anh 1.7k Dec 24, 2022
Code for our paper "Graph Pre-training for AMR Parsing and Generation" in ACL2022

AMRBART An implementation for ACL2022 paper "Graph Pre-training for AMR Parsing and Generation". You may find our paper here (Arxiv). Requirements pyt

xfbai 60 Jan 03, 2023
Python版OpenCVのTracking APIのサンプルです。DaSiamRPNアルゴリズムまで対応しています。

OpenCV-Object-Tracker-Sample Python版OpenCVのTracking APIのサンプルです。   Requirement opencv-contrib-python 4.5.3.56 or later Algorithm 2021/07/16時点でOpenCVには以

KazuhitoTakahashi 36 Jan 01, 2023
这是一个yolo3-tf2的源码,可以用于训练自己的模型。

YOLOV3:You Only Look Once目标检测模型在Tensorflow2当中的实现 目录 性能情况 Performance 所需环境 Environment 文件下载 Download 训练步骤 How2train 预测步骤 How2predict 评估步骤 How2eval 参考资料

Bubbliiiing 68 Dec 21, 2022
📚 A collection of Jupyter notebooks for learning and experimenting with OpenVINO 👓

A collection of ready-to-run Python* notebooks for learning and experimenting with OpenVINO developer tools. The notebooks are meant to provide an introduction to OpenVINO basics and teach developers

OpenVINO Toolkit 840 Jan 03, 2023
🤖 A Python library for learning and evaluating knowledge graph embeddings

PyKEEN PyKEEN (Python KnowlEdge EmbeddiNgs) is a Python package designed to train and evaluate knowledge graph embedding models (incorporating multi-m

PyKEEN 1.1k Jan 09, 2023
Transfer Learning library for Deep Neural Networks.

Transfer and meta-learning in Python Each folder in this repository corresponds to a method or tool for transfer/meta-learning. xfer-ml is a standalon

Amazon 245 Dec 08, 2022
source code of “Visual Saliency Transformer” (ICCV2021)

Visual Saliency Transformer (VST) source code for our ICCV 2021 paper “Visual Saliency Transformer” by Nian Liu, Ni Zhang, Kaiyuan Wan, Junwei Han, an

89 Dec 21, 2022
Adaptive Pyramid Context Network for Semantic Segmentation (APCNet CVPR'2019)

Adaptive Pyramid Context Network for Semantic Segmentation (APCNet CVPR'2019) Introduction Official implementation of Adaptive Pyramid Context Network

21 Nov 09, 2022
Hard cater examples from Hopper ICLR paper

CATER-h Honglu Zhou*, Asim Kadav, Farley Lai, Alexandru Niculescu-Mizil, Martin Renqiang Min, Mubbasir Kapadia, Hans Peter Graf (*Contact: honglu.zhou

NECLA ML Group 6 May 11, 2021
Pytorch Implementation for (STANet+ and STANet)

Pytorch Implementation for (STANet+ and STANet) V2-Weakly Supervised Visual-Auditory Saliency Detection with Multigranularity Perception (arxiv), pdf:

GuotaoWang 14 Nov 29, 2022
Python scripts for performing lane detection using the LSTR model in ONNX

ONNX LSTR Lane Detection Python scripts for performing lane detection using the Lane Shape Prediction with Transformers (LSTR) model in ONNX. Requirem

Ibai Gorordo 29 Aug 30, 2022
Finite difference solution of 2D Poisson equation. Can handle Dirichlet, Neumann and mixed boundary conditions.

Poisson-solver-2D Finite difference solution of 2D Poisson equation Current version can handle Dirichlet, Neumann, and mixed (combination of Dirichlet

Mohammad Asif Zaman 34 Dec 23, 2022
Qlib is an AI-oriented quantitative investment platform

Qlib is an AI-oriented quantitative investment platform, which aims to realize the potential, empower the research, and create the value of AI technologies in quantitative investment.

Microsoft 10.1k Dec 30, 2022
aka "Bayesian Methods for Hackers": An introduction to Bayesian methods + probabilistic programming with a computation/understanding-first, mathematics-second point of view. All in pure Python ;)

Bayesian Methods for Hackers Using Python and PyMC The Bayesian method is the natural approach to inference, yet it is hidden from readers behind chap

Cameron Davidson-Pilon 25.1k Jan 02, 2023
Python code for loading the Aschaffenburg Pose Dataset.

Aschaffenburg Pose Dataset (APD) This repository contains Python code for loading and filtering the Aschaffenburg Pose Dataset. The dataset itself and

1 Nov 26, 2021
Naszilla is a Python library for neural architecture search (NAS)

A repository to compare many popular NAS algorithms seamlessly across three popular benchmarks (NASBench 101, 201, and 301). You can implement your ow

270 Jan 03, 2023
A PyTorch Implementation of PGL-SUM from "Combining Global and Local Attention with Positional Encoding for Video Summarization", Proc. IEEE ISM 2021

PGL-SUM: Combining Global and Local Attention with Positional Encoding for Video Summarization PyTorch Implementation of PGL-SUM From "PGL-SUM: Combin

Evlampios Apostolidis 35 Dec 22, 2022
Research - dataset and code for 2016 paper Learning a Driving Simulator

the people's comma the paper Learning a Driving Simulator the comma.ai driving dataset 7 and a quarter hours of largely highway driving. Enough to tra

comma.ai 4.1k Jan 02, 2023