Robust Partial Matching for Person Search in the Wild

Related tags

Deep LearningAPNet
Overview

APNet for Person Search

Introduction

This is the code of Robust Partial Matching for Person Search in the Wild accepted in CVPR2020. The Align-to-Part Network(APNet) is proposed to alleviate the misalignment problem occurred in pedestrian detector, facilitating the downstream re-identification task. The code is based on maskrcnn-benchmark.

Quick start

Installation

  1. Please follow the offical installation INSTALL.md. This code does not support the mixed precision training, so feel free to skip the installation of apex.

NOTE: If you meet some problems during the installation, you may find a solution in issues of official maskrcnn-benchmark.

  1. Install APNet
git clone https://github.com/zhongyingji/APNet.git
cd APNet
rm -rf build/
python setup.py build develop

Dataset Preparation

Make sure you have downloaded the dataset of person search like PRW-v16.04.20.

  1. Since the training of APNet relies on the keypoint annotation, we provide the keypoint estimation file by AlphaPose in keypoint_pred/. Copy all the files into the root dir of dataset, like /path_to_prw_dataset/PRW-v16.04.20/:
cp keypoint_pred/* /path_to_prw_dataset/PRW-v16.04.20/
  1. Symlink the path to the dataset to datasets/ as follows:
ln -s /path_to_prw_dataset/PRW-v16.04.20/ maskrcnn_benchmark/datasets/PRW-v16.04.20

Training

APNet composes of three modules, OIM, RSFE and BBA. To train the entire network, you can simply run:

./train.sh

which contains the training scripts of the three modules.

NOTE: Both RSFE and BBA are required to be intialised with the trained OIM. For more details, please check train.sh.

You can alter the scripts in train.sh in the following aspects:

  1. We train OIM on 2 GPUS with batchsize 4. If you encounter out-of-memory (OOM) error, reduce the batchsize by setting SOLVER.IMS_PER_BATCH to a smaller number.

  2. If you want to use 1 GPU, replace the command of OIM with single GPU training script:

python tools/train_net.py --config-file "configs/reid/prw_R_50_C4.yaml" SOLVER.IMS_PER_BATCH 2 TEST.IMS_PER_BATCH 8 OUTPUT_DIR "models/prw_oim"

Test

After each of the module has been trained, you can run exactly the same training script of that module to test the performance.

Citation

If you find this work or code is helpful in your research, please consider citing:

Owner
Yingji Zhong
Yingji Zhong
Reinforcement Learning for Portfolio Management

qtrader Reinforcement Learning for Portfolio Management Why Reinforcement Learning? Learns the optimal action, rather than models the market. Adaptive

Angelos Filos 406 Jan 01, 2023
Composing methods for ML training efficiency

MosaicML Composer contains a library of methods, and ways to compose them together for more efficient ML training.

MosaicML 2.8k Jan 08, 2023
Density-aware Single Image De-raining using a Multi-stream Dense Network (CVPR 2018)

DID-MDN Density-aware Single Image De-raining using a Multi-stream Dense Network He Zhang, Vishal M. Patel [Paper Link] (CVPR'18) We present a novel d

He Zhang 224 Dec 12, 2022
A Dynamic Residual Self-Attention Network for Lightweight Single Image Super-Resolution

DRSAN A Dynamic Residual Self-Attention Network for Lightweight Single Image Super-Resolution Karam Park, Jae Woong Soh, and Nam Ik Cho Environments U

4 May 10, 2022
Code of Classification Saliency-Based Rule for Visible and Infrared Image Fusion

CSF Code of Classification Saliency-Based Rule for Visible and Infrared Image Fusion Tips: For testing: CUDA_VISIBLE_DEVICES=0 python main.py For trai

Han Xu 14 Oct 31, 2022
An educational tool to introduce AI planning concepts using mobile manipulator robots.

JEDAI Explains Decision-Making AI Virtual Machine Image The recommended way of using JEDAI is to use pre-configured Virtual Machine image that is avai

Autonomous Agents and Intelligent Robots 13 Nov 15, 2022
Measuring Coding Challenge Competence With APPS

Measuring Coding Challenge Competence With APPS This is the repository for Measuring Coding Challenge Competence With APPS by Dan Hendrycks*, Steven B

Dan Hendrycks 218 Dec 27, 2022
Graph Analysis From Scratch

Graph Analysis From Scratch Goal In this notebook we wanted to implement some functionalities to analyze a weighted graph only by using algorithms imp

Arturo Ghinassi 0 Sep 17, 2022
Cross-platform-profile-pic-changer - Script to change profile pictures across multiple platforms

cross-platform-profile-pic-changer script to change profile pictures across mult

4 Jan 17, 2022
Implementation of "GNNAutoScale: Scalable and Expressive Graph Neural Networks via Historical Embeddings" in PyTorch

PyGAS: Auto-Scaling GNNs in PyG PyGAS is the practical realization of our G NN A uto S cale (GAS) framework, which scales arbitrary message-passing GN

Matthias Fey 139 Dec 25, 2022
Semantic code search implementation using Tensorflow framework and the source code data from the CodeSearchNet project

Semantic Code Search Semantic code search implementation using Tensorflow framework and the source code data from the CodeSearchNet project. The model

Chen Wu 24 Nov 29, 2022
A transformer-based method for Healthcare Image Captioning in Vietnamese

vieCap4H Challenge 2021: A transformer-based method for Healthcare Image Captioning in Vietnamese This repo GitHub contains our solution for vieCap4H

Doanh B C 4 May 05, 2022
Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering

Graph ConvNets in PyTorch October 15, 2017 Xavier Bresson http://www.ntu.edu.sg/home/xbresson https://github.com/xbresson https://twitter.com/xbresson

Xavier Bresson 287 Jan 04, 2023
Improving Query Representations for DenseRetrieval with Pseudo Relevance Feedback:A Reproducibility Study.

APR The repo for the paper Improving Query Representations for DenseRetrieval with Pseudo Relevance Feedback:A Reproducibility Study. Environment setu

ielab 8 Nov 26, 2022
Adversarial Robustness Toolbox (ART) - Python Library for Machine Learning Security - Evasion, Poisoning, Extraction, Inference - Red and Blue Teams

Adversarial Robustness Toolbox (ART) is a Python library for Machine Learning Security. ART provides tools that enable developers and researchers to defend and evaluate Machine Learning models and ap

3.4k Jan 04, 2023
Computational inteligence project on faces in the wild dataset

Table of Contents The general idea How these scripts work? Loading data Needed modules and global variables Parsing the arrays in dataset Extracting a

tooraj taraz 4 Oct 21, 2022
Fuse radar and camera for detection

SAF-FCOS: Spatial Attention Fusion for Obstacle Detection using MmWave Radar and Vision Sensor This project hosts the code for implementing the SAF-FC

ChangShuo 18 Jan 01, 2023
FCAF3D: Fully Convolutional Anchor-Free 3D Object Detection

FCAF3D: Fully Convolutional Anchor-Free 3D Object Detection This repository contains an implementation of FCAF3D, a 3D object detection method introdu

SamsungLabs 153 Dec 29, 2022
Pytorch implementation of four neural network based domain adaptation techniques: DeepCORAL, DDC, CDAN and CDAN+E. Evaluated on benchmark dataset Office31.

Deep-Unsupervised-Domain-Adaptation Pytorch implementation of four neural network based domain adaptation techniques: DeepCORAL, DDC, CDAN and CDAN+E.

Alan Grijalva 49 Dec 20, 2022
A simple library that implements CLIP guided loss in PyTorch.

pytorch_clip_guided_loss: Pytorch implementation of the CLIP guided loss for Text-To-Image, Image-To-Image, or Image-To-Text generation. A simple libr

Sergei Belousov 74 Dec 26, 2022