Pipetools enables function composition similar to using Unix pipes.

Overview

Pipetools

tests-badge coverage-badge pypi-badge

Complete documentation

pipetools enables function composition similar to using Unix pipes.

It allows forward-composition and piping of arbitrary functions - no need to decorate them or do anything extra.

It also packs a bunch of utils that make common operations more convenient and readable.

Source is on github.

Why?

Piping and function composition are some of the most natural operations there are for plenty of programming tasks. Yet Python doesn't have a built-in way of performing them. That forces you to either deep nesting of function calls or adding extra glue code.

Example

Say you want to create a list of python files in a given directory, ordered by filename length, as a string, each file on one line and also with line numbers:

>>> print(pyfiles_by_length('../pipetools'))
1. ds_builder.py
2. __init__.py
3. compat.py
4. utils.py
5. main.py

All the ingredients are already there, you just have to glue them together. You might write it like this:

def pyfiles_by_length(directory):
    all_files = os.listdir(directory)
    py_files = [f for f in all_files if f.endswith('.py')]
    sorted_files = sorted(py_files, key=len, reverse=True)
    numbered = enumerate(py_files, 1)
    rows = ("{0}. {1}".format(i, f) for i, f in numbered)
    return '\n'.join(rows)

Or perhaps like this:

def pyfiles_by_length(directory):
    return '\n'.join('{0}. {1}'.format(*x) for x in enumerate(reversed(sorted(
        [f for f in os.listdir(directory) if f.endswith('.py')], key=len)), 1))

Or, if you're a mad scientist, you would probably do it like this:

pyfiles_by_length = lambda d: (reduce('{0}\n{1}'.format,
    map(lambda x: '%d. %s' % x, enumerate(reversed(sorted(
        filter(lambda f: f.endswith('.py'), os.listdir(d)), key=len))))))

But there should be one -- and preferably only one -- obvious way to do it.

So which one is it? Well, to redeem the situation, pipetools give you yet another possibility!

pyfiles_by_length = (pipe
    | os.listdir
    | where(X.endswith('.py'))
    | sort_by(len).descending
    | (enumerate, X, 1)
    | foreach("{0}. {1}")
    | '\n'.join)

Why would I do that, you ask? Comparing to the native Python code, it's

  • Easier to read -- minimal extra clutter
  • Easier to understand -- one-way data flow from one step to the next, nothing else to keep track of
  • Easier to change -- want more processing? just add a step to the pipeline
  • Removes some bug opportunities -- did you spot the bug in the first example?

Of course it won't solve all your problems, but a great deal of code can be expressed as a pipeline, giving you the above benefits. Read on to see how it works!

Installation

$ pip install pipetools

Uh, what's that?

Usage

The pipe

The pipe object can be used to pipe functions together to form new functions, and it works like this:

from pipetools import pipe

f = pipe | a | b | c

# is the same as:
def f(x):
    return c(b(a(x)))

A real example, sum of odd numbers from 0 to x:

from functools import partial
from pipetools import pipe

odd_sum = pipe | range | partial(filter, lambda x: x % 2) | sum

odd_sum(10)  # -> 25

Note that the chain up to the sum is lazy.

Automatic partial application in the pipe

As partial application is often useful when piping things together, it is done automatically when the pipe encounters a tuple, so this produces the same result as the previous example:

odd_sum = pipe | range | (filter, lambda x: x % 2) | sum

As of 0.1.9, this is even more powerful, see X-partial.

Built-in tools

Pipetools contain a set of pipe-utils that solve some common tasks. For example there is a shortcut for the filter class from our example, called where():

from pipetools import pipe, where

odd_sum = pipe | range | where(lambda x: x % 2) | sum

Well that might be a bit more readable, but not really a huge improvement, but wait!

If a pipe-util is used as first or second item in the pipe (which happens quite often) the pipe at the beginning can be omitted:

odd_sum = range | where(lambda x: x % 2) | sum

See pipe-utils' documentation.

OK, but what about the ugly lambda?

where(), but also foreach(), sort_by() and other pipe-utils can be quite useful, but require a function as an argument, which can either be a named function -- which is OK if it does something complicated -- but often it's something simple, so it's appropriate to use a lambda. Except Python's lambdas are quite verbose for simple tasks and the code gets cluttered...

X object to the rescue!

from pipetools import where, X

odd_sum = range | where(X % 2) | sum

How 'bout that.

Read more about the X object and it's limitations.

Automatic string formatting

Since it doesn't make sense to compose functions with strings, when a pipe (or a pipe-util) encounters a string, it attempts to use it for (advanced) formatting:

>>> countdown = pipe | (range, 1) | reversed | foreach('{}...') | ' '.join | '{} boom'
>>> countdown(5)
'4... 3... 2... 1... boom'

Feeding the pipe

Sometimes it's useful to create a one-off pipe and immediately run some input through it. And since this is somewhat awkward (and not very readable, especially when the pipe spans multiple lines):

result = (pipe | foo | bar | boo)(some_input)

It can also be done using the > operator:

result = some_input > pipe | foo | bar | boo

Note

Note that the above method of input won't work if the input object defines __gt__ for any object - including the pipe. This can be the case for example with some objects from math libraries such as NumPy. If you experience strange results try falling back to the standard way of passing input into a pipe.

But wait, there is more

Checkout the Maybe pipe, partial application on steroids or automatic data structure creation in the full documentation.

:truck: Agile Data Preparation Workflows made easy with dask, cudf, dask_cudf and pyspark

To launch a live notebook server to test optimus using binder or Colab, click on one of the following badges: Optimus is the missing framework to prof

Iron 1.3k Dec 30, 2022
Stitch together Nanopore tiled amplicon data without polishing a reference

Stitch together Nanopore tiled amplicon data using a reference guided approach Tiled amplicon data, like those produced from primers designed with pri

Amanda Warr 14 Aug 30, 2022
Anomaly Detection with R

AnomalyDetection R package AnomalyDetection is an open-source R package to detect anomalies which is robust, from a statistical standpoint, in the pre

Twitter 3.5k Dec 27, 2022
The official repository for ROOT: analyzing, storing and visualizing big data, scientifically

About The ROOT system provides a set of OO frameworks with all the functionality needed to handle and analyze large amounts of data in a very efficien

ROOT 2k Dec 29, 2022
A neural-based binary analysis tool

A neural-based binary analysis tool Introduction This directory contains the demo of a neural-based binary analysis tool. We test the framework using

Facebook Research 208 Dec 22, 2022
Exploratory Data Analysis of the 2019 Indian General Elections using a dataset from Kaggle.

2019-indian-election-eda Exploratory Data Analysis of the 2019 Indian General Elections using a dataset from Kaggle. This project is a part of the Cou

Souradeep Banerjee 5 Oct 10, 2022
Yet Another Workflow Parser for SecurityHub

YAWPS Yet Another Workflow Parser for SecurityHub "Screaming pepper" by Rum Bucolic Ape is licensed with CC BY-ND 2.0. To view a copy of this license,

myoung34 8 Dec 22, 2022
Import, connect and transform data into Excel

xlwings_query Import, connect and transform data into Excel. Description The concept is to apply data transformations to a main query object. When the

George Karakostas 1 Jan 19, 2022
PySpark Structured Streaming ROS Kafka ApacheSpark Cassandra

PySpark-Structured-Streaming-ROS-Kafka-ApacheSpark-Cassandra The purpose of this project is to demonstrate a structured streaming pipeline with Apache

Zekeriyya Demirci 5 Nov 13, 2022
Kennedy Institute of Rheumatology University of Oxford Project November 2019

TradingBot6M Kennedy Institute of Rheumatology University of Oxford Project November 2019 Run Change api.txt to binance api key: https://www.binance.c

Kannan SAR 2 Nov 16, 2021
Demonstrate a Dataflow pipeline that saves data from an API into BigQuery table

Overview dataflow-mvp provides a basic example pipeline that pulls data from an API and writes it to a BigQuery table using GCP's Dataflow (i.e., Apac

Chris Carbonell 1 Dec 03, 2021
Python implementation of Principal Component Analysis

Principal Component Analysis Principal Component Analysis (PCA) is a dimension-reduction algorithm. The idea is to use the singular value decompositio

Ignacio Darago 1 Nov 06, 2021
An ETL Pipeline of a large data set from a fictitious music streaming service named Sparkify.

An ETL Pipeline of a large data set from a fictitious music streaming service named Sparkify. The ETL process flows from AWS's S3 into staging tables in AWS Redshift.

1 Feb 11, 2022
First steps with Python in Life Sciences

First steps with Python in Life Sciences This course material is part of the "First Steps with Python in Life Science" three-day course of SIB-trainin

SIB Swiss Institute of Bioinformatics 22 Jan 08, 2023
BasstatPL is a package for performing different tabulations and calculations for descriptive statistics.

BasstatPL is a package for performing different tabulations and calculations for descriptive statistics. It provides: Frequency table constr

Angel Chavez 1 Oct 31, 2021
PCAfold is an open-source Python library for generating, analyzing and improving low-dimensional manifolds obtained via Principal Component Analysis (PCA).

PCAfold is an open-source Python library for generating, analyzing and improving low-dimensional manifolds obtained via Principal Component Analysis (PCA).

Burn Research 4 Oct 13, 2022
Convert monolithic Jupyter notebooks into Ploomber pipelines.

Soorgeon Join our community | Newsletter | Contact us | Blog | Website | YouTube Convert monolithic Jupyter notebooks into Ploomber pipelines. soorgeo

Ploomber 65 Dec 16, 2022
Show you how to integrate Zeppelin with Airflow

Introduction This repository is to show you how to integrate Zeppelin with Airflow. The philosophy behind the ingtegration is to make the transition f

Jeff Zhang 11 Dec 30, 2022
Instant search for and access to many datasets in Pyspark.

SparkDataset Provides instant access to many datasets right from Pyspark (in Spark DataFrame structure). Drop a star if you like the project. 😃 Motiv

Souvik Pratiher 31 Dec 16, 2022
Pipeline and Dataset helpers for complex algorithm evaluation.

tpcp - Tiny Pipelines for Complex Problems A generic way to build object-oriented datasets and algorithm pipelines and tools to evaluate them pip inst

Machine Learning and Data Analytics Lab FAU 3 Dec 07, 2022