Official Code for VideoLT: Large-scale Long-tailed Video Recognition (ICCV 2021)

Overview

Pytorch Code for VideoLT

[Website][Paper]

Updates

  • [10/29/2021] Features uploaded to Google Drive, for access please send us an e-mail: zhangxing18 at fudan.edu.cn
  • [09/28/2021] Features uploaded to Aliyun Drive(deprecated), for access please send us an e-mail: zhangxing18 at fudan.edu.cn
  • [08/23/2021] Checkpoint links uploaded, sorry we are handling campus network bandwidth limitation, dataset will be released in this weeek.
  • [08/15/2021] Code released. Dataset download links and checkpoints links will be updated in a week.
  • [07/29/2021] Dataset released, visit https://videolt.github.io/ for downloading.
  • [07/23/2021] VideoLT is accepted by ICCV2021.

concept

Overview

VideoLT is a large-scale long-tailed video recognition dataset, as a step toward real-world video recognition. We provide VideoLT dataset and long-tailed baselines in this repo including:

Data Preparation

Please visit https://videolt.github.io/ to obtain download links. We provide raw videos and extracted features.

For using extracted features, please modify dataset/dutils.py and set the correct path to features.

Model Zoo

The baseline scripts and checkpoints are provided in MODELZOO.md.

FrameStack

FrameStack is simple yet effective approach for long-tailed video recognition which re-samples training data at the frame level and adopts a dynamic sampling strategy based on knowledge learned by the network. The rationale behind FrameStack is to dynamically sample more frames from videos in tail classes and use fewer frames for those from head classes.

framestack

Usage

Requirement

pip install -r requirements.txt

Prepare Data Path

  1. Modify FEATURE_NAME, PATH_TO_FEATURE and FEATURE_DIM in dataset/dutils.py.

  2. Set ROOT in dataset/dutils.py to labels folder. The directory structure is:

    labels
    |-- count-labels-train.lst
    |-- test.lst
    |-- test_videofolder.txt
    |-- train.lst
    |-- train_videofolder.txt
    |-- val_videofolder.txt
    `-- validate.lst

Train

We provide scripts for training. Please refer to MODELZOO.md.

Example training scripts:

FEATURE_NAME='ResNet101'

export CUDA_VISIBLE_DEVICES='2'
python base_main.py  \
     --augment "mixup" \
     --feature_name $FEATURE_NAME \
     --lr 0.0001 \
     --gd 20 --lr_steps 30 60 --epochs 100 \
     --batch-size 128 -j 16 \
     --eval-freq 5 \
     --print-freq 20 \
     --root_log=$FEATURE_NAME-log \
     --root_model=$FEATURE_NAME'-checkpoints' \
     --store_name=$FEATURE_NAME'_bs128_lr0.0001_lateavg_mixup' \
     --num_class=1004 \
     --model_name=NonlinearClassifier \
     --train_num_frames=60 \
     --val_num_frames=150 \
     --loss_func=BCELoss \

Note: Set args.resample, args.augment and args.loss_func can apply multiple long-tailed stratigies.

Options:

    args.resample: ['None', 'CBS','SRS']
    args.augment : ['None', 'mixup', 'FrameStack']
    args.loss_func: ['BCELoss', 'LDAM', 'EQL', 'CBLoss', 'FocalLoss']

Test

We provide scripts for testing in scripts. Modify CKPT to saved checkpoints.

Example testing scripts:

FEATURE_NAME='ResNet101'
CKPT='VideoLT_checkpoints/ResNet-101/ResNet101_bs128_lr0.0001_lateavg_mixup/ckpt.best.pth.tar'

export CUDA_VISIBLE_DEVICES='1'
python base_test.py \
     --resume $CKPT \
     --feature_name $FEATURE_NAME \
     --batch-size 128 -j 16 \
     --print-freq 20 \
     --num_class=1004 \
     --model_name=NonlinearClassifier \
     --train_num_frames=60 \
     --val_num_frames=150 \
     --loss_func=BCELoss \

Citing

If you find VideoLT helpful for your research, please consider citing:

@misc{zhang2021videolt,
title={VideoLT: Large-scale Long-tailed Video Recognition}, 
author={Xing Zhang and Zuxuan Wu and Zejia Weng and Huazhu Fu and Jingjing Chen and Yu-Gang Jiang and Larry Davis},
year={2021},
eprint={2105.02668},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
Owner
Skye
Soul Programmer & Science Enthusiast
Skye
TensorFlow implementation of ENet, trained on the Cityscapes dataset.

segmentation TensorFlow implementation of ENet (https://arxiv.org/pdf/1606.02147.pdf) based on the official Torch implementation (https://github.com/e

Fredrik Gustafsson 248 Dec 16, 2022
The repo contains the code of the ACL2020 paper `Dice Loss for Data-imbalanced NLP Tasks`

Dice Loss for NLP Tasks This repository contains code for Dice Loss for Data-imbalanced NLP Tasks at ACL2020. Setup Install Package Dependencies The c

223 Dec 17, 2022
Constructing interpretable quadratic accuracy predictors to serve as an objective function for an IQCQP problem that represents NAS under latency constraints and solve it with efficient algorithms.

IQNAS: Interpretable Integer Quadratic programming Neural Architecture Search Realistic use of neural networks often requires adhering to multiple con

0 Oct 24, 2021
An MQA (Studio, originalSampleRate) identifier for lossless flac files written in Python.

An MQA (Studio, originalSampleRate) identifier for "lossless" flac files written in Python.

Daniel 10 Oct 03, 2022
PyTorch implementation(s) of various ResNet models from Twitch streams.

pytorch-resnet-twitch PyTorch implementation(s) of various ResNet models from Twitch streams. Status: ResNet50 currently not working. Will update in n

Daniel Bourke 3 Jan 11, 2022
Rainbow: Combining Improvements in Deep Reinforcement Learning

Rainbow Rainbow: Combining Improvements in Deep Reinforcement Learning [1]. Results and pretrained models can be found in the releases. DQN [2] Double

Kai Arulkumaran 1.4k Dec 29, 2022
Unsupervised Image Generation with Infinite Generative Adversarial Networks

Unsupervised Image Generation with Infinite Generative Adversarial Networks Here is the implementation of MICGANs using DCGAN architecture on MNIST da

16 Dec 24, 2021
Methods to get the probability of a changepoint in a time series.

Bayesian Changepoint Detection Methods to get the probability of a changepoint in a time series. Both online and offline methods are available. Read t

Johannes Kulick 554 Dec 30, 2022
Official code for "End-to-End Optimization of Scene Layout" -- including VAE, Diff Render, SPADE for colorization (CVPR 2020 Oral)

End-to-End Optimization of Scene Layout Code release for: End-to-End Optimization of Scene Layout CVPR 2020 (Oral) Project site, Bibtex For help conta

Andrew Luo 41 Dec 09, 2022
ReLoss - Official implementation for paper "Relational Surrogate Loss Learning" ICLR 2022

Relational Surrogate Loss Learning (ReLoss) Official implementation for paper "R

Tao Huang 31 Nov 22, 2022
CLIPImageClassifier wraps clip image model from transformers

CLIPImageClassifier CLIPImageClassifier wraps clip image model from transformers. CLIPImageClassifier is initialized with the argument classes, these

Jina AI 6 Sep 12, 2022
An implementation of quantum convolutional neural network with MindQuantum. Huawei, classifying MNIST dataset

关于实现的一点说明 山东大学 2020级 苏博南 www.subonan.com 文件说明 tools.py 这里面主要有两个函数: resize(a, lenb) 这其实是我找同学写的一个小算法hhh。给出一个$28\times 28$的方阵a,返回一个$lenb\times lenb$的方阵。因

ぼっけなす 2 Aug 29, 2022
Fast mesh denoising with data driven normal filtering using deep variational autoencoders

Fast mesh denoising with data driven normal filtering using deep variational autoencoders This is an implementation for the paper entitled "Fast mesh

9 Dec 02, 2022
Towards Implicit Text-Guided 3D Shape Generation (CVPR2022)

Towards Implicit Text-Guided 3D Shape Generation Towards Implicit Text-Guided 3D Shape Generation (CVPR2022) Code for the paper [Towards Implicit Text

55 Dec 16, 2022
Scripts of Machine Learning Algorithms from Scratch. Implementations of machine learning models and algorithms using nothing but NumPy with a focus on accessibility. Aims to cover everything from basic to advance.

Algo-ScriptML Python implementations of some of the fundamental Machine Learning models and algorithms from scratch. The goal of this project is not t

Algo Phantoms 81 Nov 26, 2022
Auxiliary data to the CHIIR paper Searching to Learn with Instructional Scaffolding

Searching to Learn with Instructional Scaffolding This is the data and analysis code for the paper "Searching to Learn with Instructional Scaffolding"

Arthur Câmara 2 Mar 02, 2022
Vector Quantization, in Pytorch

Vector Quantization - Pytorch A vector quantization library originally transcribed from Deepmind's tensorflow implementation, made conveniently into a

Phil Wang 665 Jan 08, 2023
MMDetection3D is an open source object detection toolbox based on PyTorch

MMDetection3D is an open source object detection toolbox based on PyTorch, towards the next-generation platform for general 3D detection. It is a part of the OpenMMLab project developed by MMLab.

OpenMMLab 3.2k Jan 05, 2023
Model parallel transformers in Jax and Haiku

Mesh Transformer Jax A haiku library using the new(ly documented) xmap operator in Jax for model parallelism of transformers. See enwik8_example.py fo

Ben Wang 4.8k Jan 01, 2023
⚓ Eurybia monitor model drift over time and securize model deployment with data validation

View Demo · Documentation · Medium article 🔍 Overview Eurybia is a Python library which aims to help in : Detecting data drift and model drift Valida

MAIF 172 Dec 27, 2022