nnFormer: Interleaved Transformer for Volumetric Segmentation

Related tags

Deep LearningnnFormer
Overview

nnFormer: Interleaved Transformer for Volumetric Segmentation

Code for paper "nnFormer: Interleaved Transformer for Volumetric Segmentation ". Please read our preprint at the following link: paper_address.

Parts of codes are borrowed from nn-UNet.


Installation

1、System requirements

This software was originally designed and run on a system running Ubuntu 18.01, with Python 3.6, PyTorch 1.8.1, and CUDA 10.1. For a full list of software packages and version numbers, see the Conda environment file environment.yml.

This software leverages graphical processing units (GPUs) to accelerate neural network training and evaluation; systems lacking a suitable GPU will likely take an extremely long time to train or evaluate models. The software was tested with the NVIDIA RTX 2080 TI GPU, though we anticipate that other GPUs will also work, provided that the unit offers sufficient memory.

2、Installation guide

We recommend installation of the required packages using the Conda package manager, available through the Anaconda Python distribution. Anaconda is available free of charge for non-commercial use through Anaconda Inc. After installing Anaconda and cloning this repository, For use as integrative framework:

git clone https://github.com/282857341/nnFormer.git
cd nnFormer
conda env create -f environment.yml
source activate nnFormer
pip install -e .

3、The main downloaded file directory description

  • ACDC_dice: Calculate dice of ACDC dataset

  • Synapse_dice_and_hd: Calulate dice of the Synapse dataset

  • dataset_json: About how to divide the training and test set

  • inference: The entry program of the infernece.

  • network_architecture: The models are stored here.

  • run: The entry program of the training.

  • training: The trainers are stored here, the training of the network is conducted by the trainer.


Training

1、Datasets

Datasets can be downloaded at the following links:

And the division of the dataset can be seen in the files in the ./dataset_json/

Dataset I ACDC

Dataset II The Synapse multi-organ CT dataset

2、Setting up the datasets

While we provide code to load data for training a deep-learning model, you will first need to download images from the above repositories. Regarding the format setting and related preprocessing of the dataset, we operate based on nnFormer, so I won’t go into details here. You can see nnUNet for specific operations.

Regarding the downloaded data, I will not introduce too much here, you can go to the corresponding website to view it. Organize the downloaded DataProcessed as follows:

./Pretrained_weight/
./nnFormer/
./DATASET/
  ├── nnFormer_raw/
      ├── nnFormer_raw_data/
          ├── Task01_ACDC/
              ├── imagesTr/
              ├── imagesTs/
              ├── labelsTr/
              ├── labelsTs/
              ├── dataset.json
          ├── Task02_Synapse/
              ├── imagesTr/
              ├── imagesTs/
              ├── labelsTr/
              ├── labelsTs/
              ├── dataset.json
      ├── nnFormer_cropped_data/
  ├── nnFormer_trained_models/
  ├── nnFormer_preprocessed/

After that, you can preprocess the data using:

nnFormer_convert_decathlon_task -i ../DATASET/nnFormer_raw/nnFormer_raw_data/Task01_ACDC
nnFormer_convert_decathlon_task -i ../DATASET/nnFormer_raw/nnFormer_raw_data/Task02_Synapse
nnFormer_plan_and_preprocess -t 1
nnFormer_plan_and_preprocess -t 2

3 Training and Testing the models

A. Use the best model we have trained to infer the test set
(1).Put the downloaded the best training weights in the specified directory.

the download link is

Link:https://pan.baidu.com/s/1h1h8_DKvve8enyTiIyzfHw 
Extraction code:yimv

The Google Drive link is as follows:

Link:https://drive.google.com/drive/folders/16y1QYOQD4vjrR2hh8TpPB-tq5EYX--Az?usp=sharing

the specified directory is

../DATASET/nnFormer_trained_models/nnFormer/3d_fullres/Task001_ACDC/nnFormerTrainerV2_ACDC__nnFormerPlansv2.1/fold_0/model_best.model
../DATASET/nnFormer_trained_models/nnFormer/3d_fullres/Task001_ACDC/nnFormerTrainerV2_ACDC__nnFormerPlansv2.1/fold_0/model_best.model.pkl

../DATASET/nnFormer_trained_models/nnFormer/3d_fullres/Task002_Synapse/nnFormerTrainerV2_Synapse__nnFormerPlansv2.1/fold_0/model_best.model
../DATASET/nnFormer_trained_models/nnFormer/3d_fullres/Task002_Synapse/nnFormerTrainerV2_Synapse__nnFormerPlansv2.1/fold_0/model_best.model.pkl
(2).Evaluating the models
  • ACDC

Inference

nnFormer_predict -i ../DATASET/nnFormer_raw/nnFormer_raw_data/Task001_ACDC/imagesTs -o ../DATASET/nnFormer_raw/nnFormer_raw_data/Task001_ACDC/inferTs/output -m 3d_fullres -f 0 -t 1 -chk model_best -tr nnFormerTrainerV2_ACDC

Calculate DICE

python ./nnformer/ACDC_dice/inference.py
  • The Synapse multi-organ CT dataset

Inference

nnFormer_predict -i ../DATASET/nnFormer_raw/nnFormer_raw_data/Task002_Synapse/imagesTs -o ../DATASET/nnFormer_raw/nnFormer_raw_data/Task002_Synapse/inferTs/output -m 3d_fullres -f 0 -t 2 -chk model_best -tr nnFormerTrainerV2_Synapse

Calculate DICE

python ./nnformer/Synapse_dice_and_hd/inference.py

The dice result will be saved in ../DATASET/nnFormer_raw/nnFormer_raw_data/Task002_Synapse/inferTs/output

B. The complete process of retraining the model and inference
(1).Put the downloaded pre-training weights in the specified directory.

the download link is

Link:https://pan.baidu.com/s/1h1h8_DKvve8enyTiIyzfHw 
Extraction code:yimv

the specified directory is

../Pretrained_weight/pretrain_ACDC.model
../Pretrained_weight/pretrain_Synapse.model
(2).Training
  • ACDC
nnFormer_train 3d_fullres nnFormerTrainerV2_ACDC 1 0 
  • The Synapse multi-organ CT dataset
nnFormer_train 3d_fullres nnFormerTrainerV2_Synapse 2 0 
(3).Evaluating the models
  • ACDC

Inference

nnFormer_predict -i ../DATASET/nnFormer_raw/nnFormer_raw_data/Task001_ACDC/imagesTs -o ../DATASET/nnFormer_raw/nnFormer_raw_data/Task001_ACDC/inferTs/output -m 3d_fullres -f 0 -t 1 -chk model_best -tr nnFormerTrainerV2_ACDC

Calculate DICE

python ./nnformer/ACDC_dice/inference.py
  • The Synapse multi-organ CT dataset

Inference

nnFormer_predict -i ../DATASET/nnFormer_raw/nnFormer_raw_data/Task002_Synapse/imagesTs -o ../DATASET/nnFormer_raw/nnFormer_raw_data/Task002_Synapse/inferTs/output -m 3d_fullres -f 0 -t 2 -chk model_best -tr nnFormerTrainerV2_Synapse

Calculate DICE

python ./nnformer/Synapse_dice_and_hd/inference.py

The dice results will be saved in ../DATASET/nnFormer_raw/nnFormer_raw_data/Task002_Synapse/inferTs/output

Owner
jsguo
jsguo
Adversarial Graph Augmentation to Improve Graph Contrastive Learning

ADGCL : Adversarial Graph Augmentation to Improve Graph Contrastive Learning Introduction This repo contains the Pytorch [1] implementation of Adversa

susheel suresh 62 Nov 19, 2022
Code for "ATISS: Autoregressive Transformers for Indoor Scene Synthesis", NeurIPS 2021

ATISS: Autoregressive Transformers for Indoor Scene Synthesis This repository contains the code that accompanies our paper ATISS: Autoregressive Trans

138 Dec 22, 2022
Source code for PairNorm (ICLR 2020)

PairNorm Official pytorch source code for PairNorm paper (ICLR 2020) This code requires pytorch_geometric=1.3.2 usage For SGC, we use original PairNo

62 Dec 08, 2022
BRNet - code for Automated assessment of BI-RADS categories for ultrasound images using multi-scale neural networks with an order-constrained loss function

BRNet code for "Automated assessment of BI-RADS categories for ultrasound images using multi-scale neural networks with an order-constrained loss func

Yong Pi 2 Mar 09, 2022
Multistream CNN for Robust Acoustic Modeling

Multistream Convolutional Neural Network (CNN) A multistream CNN is a novel neural network architecture for robust acoustic modeling in speech recogni

ASAPP Research 37 Sep 21, 2022
MAterial del programa Misión TIC 2022

Mision TIC 2022 Esta iniciativa, aparece como respuesta frente a los retos de la Cuarta Revolución Industrial, y tiene como objetivo la formación de 1

6 May 25, 2022
FlingBot: The Unreasonable Effectiveness of Dynamic Manipulations for Cloth Unfolding

This repository contains code for training and evaluating FlingBot in both simulation and real-world settings on a dual-UR5 robot arm setup for Ubuntu 18.04

Columbia Artificial Intelligence and Robotics Lab 70 Dec 06, 2022
DI-smartcross - Decision Intelligence Platform for Traffic Crossing Signal Control

DI-smartcross DI-smartcross - Decision Intelligence Platform for Traffic Crossin

OpenDILab 213 Jan 02, 2023
The BCNet related data and inference model.

BCNet This repository includes the some source code and related dataset of paper BCNet: Learning Body and Cloth Shape from A Single Image, ECCV 2020,

81 Dec 12, 2022
Conversion between units used in magnetism

convmag Conversion between various units used in magnetism The conversions between base units available are: T - G : 1e4

0 Jul 15, 2021
Codes for CIKM'21 paper 'Self-Supervised Graph Co-Training for Session-based Recommendation'.

COTREC Codes for CIKM'21 paper 'Self-Supervised Graph Co-Training for Session-based Recommendation'. Requirements: Python 3.7, Pytorch 1.6.0 Best Hype

Xin Xia 42 Dec 09, 2022
Source code for CAST - Crisis Domain Adaptation Using Sequence-to-sequence Transformers (Accepted to ISCRAM 2021, CorePaper).

Source code for CAST: Crisis Domain Adaptation UsingSequence-to-sequenceTransformers (Paper, BibTeX, Accepted to ISCRAM 2021, CorePaper) Quick start D

Congcong Wang 0 Jul 14, 2021
Pytorch implementation of Implicit Behavior Cloning.

Implicit Behavior Cloning - PyTorch (wip) Pytorch implementation of Implicit Behavior Cloning. Install conda create -n ibc python=3.8 pip install -r r

Kevin Zakka 49 Dec 25, 2022
Cycle Consistent Adversarial Domain Adaptation (CyCADA)

Cycle Consistent Adversarial Domain Adaptation (CyCADA) A pytorch implementation of CyCADA. If you use this code in your research please consider citi

Hyunwoo Ko 2 Jan 10, 2022
Codecov coverage standard for Python

Python-Standard Last Updated: 01/07/22 00:09:25 What is this? This is a Python application, with basic unit tests, for which coverage is uploaded to C

Codecov 10 Nov 04, 2022
Fast Neural Style for Image Style Transform by Pytorch

FastNeuralStyle by Pytorch Fast Neural Style for Image Style Transform by Pytorch This is famous Fast Neural Style of Paper Perceptual Losses for Real

Bengxy 81 Sep 03, 2022
ncnn is a high-performance neural network inference framework optimized for the mobile platform

ncnn ncnn is a high-performance neural network inference computing framework optimized for mobile platforms. ncnn is deeply considerate about deployme

Tencent 16.2k Jan 05, 2023
PyContinual (An Easy and Extendible Framework for Continual Learning)

PyContinual (An Easy and Extendible Framework for Continual Learning) Easy to Use You can sumply change the baseline, backbone and task, and then read

Zixuan Ke 176 Jan 05, 2023
JDet is Object Detection Framework based on Jittor.

JDet is Object Detection Framework based on Jittor.

135 Dec 14, 2022
thundernet ncnn

MMDetection_Lite 基于mmdetection 实现一些轻量级检测模型,安装方式和mmdeteciton相同 voc0712 voc 0712训练 voc2007测试 coco预训练 thundernet_voc_shufflenetv2_1.5 input shape mAP 320

DayBreak 39 Dec 05, 2022