Official PyTorch implementation of N-ImageNet: Towards Robust, Fine-Grained Object Recognition with Event Cameras (ICCV 2021)

Overview

N-ImageNet: Towards Robust, Fine-Grained Object Recognition with Event Cameras

Official PyTorch implementation of N-ImageNet: Towards Robust, Fine-Grained Object Recognition with Event Cameras (ICCV 2021) [Paper] [Video].

In this repository, we provide instructions for downloading N-ImageNet along with the implementation of the baseline models presented in the paper. If you have any questions regarding the dataset or the baseline implementations, please leave an issue or contact [email protected].

Downloading N-ImageNet

To download N-ImageNet, please fill out the following questionaire, and we will send guidelines for downloading the data via email: [Link].

Training / Evaluating Baseline Models

Installation

The codebase is tested on a Ubuntu 18.04 machine with CUDA 10.1. However, it may work with other configurations as well. First, create and activate a conda environment with the following command.

conda env create -f environment.yml
conda activate e2t

In addition, you must install pytorch_scatter. Follow the instructions provided in the pytorch_scatter github repo. You need to install the version for torch 1.7.1 and CUDA 10.1.

Dataset Setup

Before you move on to the next step, please download N-ImageNet. Once you download N-ImageNet, you will spot a structure as follows.

N_Imagenet
├── train_list.txt
├── val_list.txt
├── extracted_train (train split)
│   ├── nXXXXXXXX (label)
│   │   ├── XXXXX.npz (event data)
│   │   │
│   │   ⋮
│   │   │
│   │   └── YYYYY.npz (event data)
└── extracted_val (val split)
    └── nXXXXXXXX (label)
        ├── XXXXX.npz (event data)
        │
        ⋮
        │
        └── YYYYY.npz (event data)

The N-ImageNet variants file (which would be saved as N_Imagenet_cam once downloaded) will have a similar file structure, except that it only contains validation files. The following instruction is based on N-ImageNet, but one can follow a similar step to test with N-ImageNet variants.

First, modify train_list.txt and val_list.txt such that it matches the directory structure of the downloaded data. To illustrate, if you open train_list.txt you will see the following

/home/jhkim/Datasets/N_Imagenet/extracted_train/n01440764/n01440764_10026.npz
⋮
/home/jhkim/Datasets/N_Imagenet/extracted_train/n15075141/n15075141_999.npz

Modify each path within the .txt file so that it accords with the directory in which N-ImageNet is downloaded. For example, if N-ImageNet is located in /home/karina/assets/Datasets/, modify train.txt as follows.

/home/karina/assets/Datasets/N_Imagenet/extracted_train/n01440764/n01440764_10026.npz
⋮
/home/karina/assets/Datasets/N_Imagenet/extracted_train/n15075141/n15075141_999.npz

Once this is done, create a Datasets/ directory within real_cnn_model, and create a symbolic link within Datasets. To illustrate, using the directory structure of the previous example, first use the following command.

cd PATH_TO_REPOSITORY/real_cnn_model
mkdir Datasets; cd Datasets
ln -sf /home/karina/assets/Datasets/N_Imagenet/ ./
ln -sf /home/karina/assets/Datasets/N_Imagenet_cam/ ./  (If you have also downloaded the variants)

Congratulations! Now you can start training/testing models on N-ImageNet.

Training a Model

You can train a model based on the binary event image representation with the following command.

export PYTHONPATH=PATH_TO_REPOSITORY:$PYTHONPATH
cd PATH_TO_REPOSITORY/real_cnn_model
python main.py --config configs/imagenet/cnn_adam_acc_two_channel_big_kernel_random_idx.ini

For the examples below, we assume the PYTHONPATH environment variable is set as above. Also, you can change minor details within the config before training by using the --override flag. For example, if you want to change the batch size use the following command.

python main.py --config configs/imagenet/cnn_adam_acc_two_channel_big_kernel_random_idx.ini --override 'batch_size=8'

Evaluating a Model

Suppose you have a pretrained model saved in PATH_TO_REPOSITORY/real_cnn_model/experiments/best.tar. You evaluate the performance of this model on the N-ImageNet validation split by using the following command.

python main.py --config configs/imagenet/cnn_adam_acc_two_channel_big_kernel_random_idx.ini --override 'load_model=PATH_TO_REPOSITORY/real_cnn_model/experiments/best.tar'

Downloading Pretrained Models

Coming soon!

Owner
Noob grad student
Implementation for paper MLP-Mixer: An all-MLP Architecture for Vision

MLP Mixer Implementation for paper MLP-Mixer: An all-MLP Architecture for Vision. Give us a star if you like this repo. Author: Github: bangoc123 Emai

Ngoc Nguyen Ba 86 Dec 10, 2022
A GUI to automatically create a TOPAS-readable MLC simulation file

Python script to create a TOPAS-readable simulation file descriring a Multi-Leaf-Collimator. Builds the MLC using the data from a 3D .stl file.

Sebastian Schäfer 0 Jun 19, 2022
Official implementation of the paper WAV2CLIP: LEARNING ROBUST AUDIO REPRESENTATIONS FROM CLIP

Wav2CLIP 🚧 WIP 🚧 Official implementation of the paper WAV2CLIP: LEARNING ROBUST AUDIO REPRESENTATIONS FROM CLIP 📄 🔗 Ho-Hsiang Wu, Prem Seetharaman

Descript 240 Dec 13, 2022
571 Dec 25, 2022
A keras-based real-time model for medical image segmentation (CFPNet-M)

CFPNet-M: A Light-Weight Encoder-Decoder Based Network for Multimodal Biomedical Image Real-Time Segmentation This repository contains the implementat

268 Nov 27, 2022
Natural Posterior Network: Deep Bayesian Predictive Uncertainty for Exponential Family Distributions

Natural Posterior Network This repository provides the official implementation o

Oliver Borchert 54 Dec 06, 2022
Knowledge Distillation Toolbox for Semantic Segmentation

SegDistill: Toolbox for Knowledge Distillation on Semantic Segmentation Networks This repo contains the supported code and configuration files for Seg

9 Dec 12, 2022
Official implementation of "Variable-Rate Deep Image Compression through Spatially-Adaptive Feature Transform", ICCV 2021

Variable-Rate Deep Image Compression through Spatially-Adaptive Feature Transform This repository is the implementation of "Variable-Rate Deep Image C

Myungseo Song 47 Dec 13, 2022
Official Pytorch Implementation of: "Semantic Diversity Learning for Zero-Shot Multi-label Classification"(2021) paper

Semantic Diversity Learning for Zero-Shot Multi-label Classification Paper Official PyTorch Implementation Avi Ben-Cohen, Nadav Zamir, Emanuel Ben Bar

28 Aug 29, 2022
This tool converts a Nondeterministic Finite Automata (NFA) into a Deterministic Finite Automata (DFA)

This tool converts a Nondeterministic Finite Automata (NFA) into a Deterministic Finite Automata (DFA)

Quinn Herden 1 Feb 04, 2022
Predicting Tweet Sentiment Maching Learning and streamlit

Predicting-Tweet-Sentiment-Maching-Learning-and-streamlit (I prefere using Visual Studio Code ) Open the folder in VS Code Run the first cell in requi

1 Nov 20, 2021
Distributed Evolutionary Algorithms in Python

DEAP DEAP is a novel evolutionary computation framework for rapid prototyping and testing of ideas. It seeks to make algorithms explicit and data stru

Distributed Evolutionary Algorithms in Python 4.9k Jan 05, 2023
CVAT is free, online, interactive video and image annotation tool for computer vision

Computer Vision Annotation Tool (CVAT) CVAT is free, online, interactive video and image annotation tool for computer vision. It is being used by our

OpenVINO Toolkit 8.6k Jan 04, 2023
Classification Modeling: Probability of Default

Credit Risk Modeling in Python Introduction: If you've ever applied for a credit card or loan, you know that financial firms process your information

Aktham Momani 2 Nov 07, 2022
Unbalanced Feature Transport for Exemplar-based Image Translation (CVPR 2021)

UNITE and UNITE+ Unbalanced Feature Transport for Exemplar-based Image Translation (CVPR 2021) Unbalanced Intrinsic Feature Transport for Exemplar-bas

Fangneng Zhan 183 Nov 09, 2022
Implementation of Diverse Semantic Image Synthesis via Probability Distribution Modeling

Diverse Semantic Image Synthesis via Probability Distribution Modeling (CVPR 2021) Paper Zhentao Tan, Menglei Chai, Dongdong Chen, Jing Liao, Qi Chu,

tzt 45 Nov 17, 2022
Using Streamlit to host a multi-page tool with model specs and classification metrics, while also accepting user input values for prediction.

Predicitng_viability Using Streamlit to host a multi-page tool with model specs and classification metrics, while also accepting user input values for

Gopalika Sharma 1 Nov 08, 2021
PyTorch implementation of DARDet: A Dense Anchor-free Rotated Object Detector in Aerial Images

DARDet PyTorch implementation of "DARDet: A Dense Anchor-free Rotated Object Detector in Aerial Images", [pdf]. Highlights: 1. We develop a new dense

41 Oct 23, 2022
An alarm clock coded in Python 3 with Tkinter

Tkinter-Alarm-Clock An alarm clock coded in Python 3 with Tkinter. Run python3 Tkinter Alarm Clock.py in a terminal if you have Python 3. NOTE: This p

CodeMaster7000 1 Dec 25, 2021
Official implementation of NeurIPS 2021 paper "Contextual Similarity Aggregation with Self-attention for Visual Re-ranking"

CSA: Contextual Similarity Aggregation with Self-attention for Visual Re-ranking PyTorch training code for CSA (Contextual Similarity Aggregation). We

Hui Wu 19 Oct 21, 2022