Official implementation of the paper WAV2CLIP: LEARNING ROBUST AUDIO REPRESENTATIONS FROM CLIP

Overview

Wav2CLIP

🚧 WIP 🚧

Official implementation of the paper WAV2CLIP: LEARNING ROBUST AUDIO REPRESENTATIONS FROM CLIP 📄 🔗

Ho-Hsiang Wu, Prem Seetharaman, Kundan Kumar, Juan Pablo Bello

We propose Wav2CLIP, a robust audio representation learning method by distilling from Contrastive Language-Image Pre-training (CLIP). We systematically evaluate Wav2CLIP on a variety of audio tasks including classification, retrieval, and generation, and show that Wav2CLIP can outperform several publicly available pre-trained audio representation algorithms. Wav2CLIP projects audio into a shared embedding space with images and text, which enables multimodal applications such as zero-shot classification, and cross-modal retrieval. Furthermore, Wav2CLIP needs just ~10% of the data to achieve competitive performance on downstream tasks compared with fully supervised models, and is more efficient to pre-train than competing methods as it does not require learning a visual model in concert with an auditory model. Finally, we demonstrate image generation from Wav2CLIP as qualitative assessment of the shared embedding space. Our code and model weights are open sourced and made available for further applications.

Installation

pip install wav2clip

Usage

Clip-Level Embeddings

import wav2clip

model = wav2clip.get_model()
embeddings = wav2clip.embed_audio(audio, model)

Frame-Level Embeddings

import wav2clip

model = wav2clip.get_model(frame_length=16000, hop_length=16000)
embeddings = wav2clip.embed_audio(audio, model)
Comments
  • request of projection layer weight

    request of projection layer weight

    Hi @hohsiangwu , Thanks for great work! Request pre-trained weights of image_transform (MLP layer) for audio-image-language joint embedding space.

    Currently, only audio encoders seem to exist in the get_model function. Is there any big problem if I use CLIP embedding (text or image) without projection layer?

    opened by SeungHeonDoh 2
  • Initial checkin for accessing pre-trained model via pip install

    Initial checkin for accessing pre-trained model via pip install

    I am considering using the release feature of GitHub to host model weights, once the url is added to MODEL_WEIGHTS_URL, and the repository is made public, we should be able to model = torch.hub.load('descriptinc/lyrebird-wav2clip', 'wav2clip', pretrained=True)

    opened by hohsiangwu 1
  • Adding VQGAN-CLIP with modification to generate audio

    Adding VQGAN-CLIP with modification to generate audio

    • Adding a working snapshot of original generate.py from https://github.com/nerdyrodent/VQGAN-CLIP/
    • Modify to add audio related params and functions
    • Add scripts to generate image and video with options for conditioning and interpolation
    opened by hohsiangwu 0
  • Supervised scenario no transform

    Supervised scenario no transform

    In the supervise scenario in the __init__.py the transform flag is not set to True, so the model doesn't contain the MLP layer after training. I'm wondering how you train the MLP layer when using as pretrained.

    opened by alirezadir 0
  • Integrated into VQGAN+CLIP 3D Zooming notebook

    Integrated into VQGAN+CLIP 3D Zooming notebook

    Dear researchers,

    I integrated Wav2CLIP into a VQGAN+CLIP animation notebook.

    It is available on colab here: https://colab.research.google.com/github/pollinations/hive/blob/main/notebooks/2%20Text-To-Video/1%20CLIP-Guided%20VQGAN%203D%20Turbo%20Zoom.ipynb

    I'm part of a team creating an open-source generative art platform called Pollinations.AI. It's also possible to use through our frontend if you are interested. https://pollinations.ai/p/QmT7yt67DF3GF4wd2vyw6bAgN3QZx7Xpnoyx98YWEsEuV7/create

    Here is an example output: https://user-images.githubusercontent.com/5099901/168467451-f633468d-e596-48f5-8c2c-2dc54648ead3.mp4

    opened by voodoohop 0
  • The details concerning loading raw audio files

    The details concerning loading raw audio files

    Hi !

    I haved imported the wave2clip as a package, however when testing, the inputs for the model to extract features are not original audio files. Thus can you provided the details to load the audio files to processed data for the model?

    opened by jinx2018 0
  • torch version

    torch version

    Hi, thanks for sharing the wonderful work! I encountered some issues during pip installing it, so may I ask what is the torch version you used? I cannot find the requirement of this project. Thanks!

    opened by annahung31 0
  • Error when importing after fresh installation on colab

    Error when importing after fresh installation on colab

    What CUDA and Python versions have you tested the pip package in? After installation on a fresh collab I receive the following error:


    OSError Traceback (most recent call last) in () ----> 1 import wav2clip

    7 frames /usr/local/lib/python3.7/dist-packages/wav2clip/init.py in () 2 import torch 3 ----> 4 from .model.encoder import ResNetExtractor 5 6

    /usr/local/lib/python3.7/dist-packages/wav2clip/model/encoder.py in () 4 from torch import nn 5 ----> 6 from .resnet import BasicBlock 7 from .resnet import ResNet 8

    /usr/local/lib/python3.7/dist-packages/wav2clip/model/resnet.py in () 3 import torch.nn as nn 4 import torch.nn.functional as F ----> 5 import torchaudio 6 7

    /usr/local/lib/python3.7/dist-packages/torchaudio/init.py in () ----> 1 from torchaudio import _extension # noqa: F401 2 from torchaudio import ( 3 compliance, 4 datasets, 5 functional,

    /usr/local/lib/python3.7/dist-packages/torchaudio/_extension.py in () 25 26 ---> 27 _init_extension()

    /usr/local/lib/python3.7/dist-packages/torchaudio/_extension.py in _init_extension() 19 # which depends on libtorchaudio and dynamic loader will handle it for us. 20 if path.exists(): ---> 21 torch.ops.load_library(path) 22 torch.classes.load_library(path) 23 # This import is for initializing the methods registered via PyBind11

    /usr/local/lib/python3.7/dist-packages/torch/_ops.py in load_library(self, path) 108 # static (global) initialization code in order to register custom 109 # operators with the JIT. --> 110 ctypes.CDLL(path) 111 self.loaded_libraries.add(path) 112

    /usr/lib/python3.7/ctypes/init.py in init(self, name, mode, handle, use_errno, use_last_error) 362 363 if handle is None: --> 364 self._handle = _dlopen(self._name, mode) 365 else: 366 self._handle = handle

    OSError: libcudart.so.10.2: cannot open shared object file: No such file or directory

    opened by janzuiderveld 0
Releases(v0.1.0-alpha)
Owner
Descript
Descript
The UI as a mobile display for OP25

OP25 Mobile Control Head A 'remote' control head that interfaces with an OP25 instance. We take advantage of some data end-points left exposed for the

Sarah Rose Giddings 13 Dec 28, 2022
DCGAN-tensorflow - A tensorflow implementation of Deep Convolutional Generative Adversarial Networks

DCGAN in Tensorflow Tensorflow implementation of Deep Convolutional Generative Adversarial Networks which is a stabilize Generative Adversarial Networ

Taehoon Kim 7.1k Dec 29, 2022
Official implementation of Rich Semantics Improve Few-Shot Learning (BMVC, 2021)

Rich Semantics Improve Few-Shot Learning Paper Link Abstract : Human learning benefits from multi-modal inputs that often appear as rich semantics (e.

Mohamed Afham 11 Jul 26, 2022
AutoVideo: An Automated Video Action Recognition System

AutoVideo is a system for automated video analysis. It is developed based on D3M infrastructure, which describes machine learning with generic pipeline languages. Currently, it focuses on video actio

Data Analytics Lab at Texas A&M University 267 Dec 17, 2022
🌳 A Python-inspired implementation of the Optimum-Path Forest classifier.

OPFython: A Python-Inspired Optimum-Path Forest Classifier Welcome to OPFython. Note that this implementation relies purely on the standard LibOPF. Th

Gustavo Rosa 30 Jan 04, 2023
Dungeons and Dragons randomized content generator

Component based Dungeons and Dragons generator Supports Entity/Monster Generation NPC Generation Weapon Generation Encounter Generation Environment Ge

Zac 3 Dec 04, 2021
Back to the Feature: Learning Robust Camera Localization from Pixels to Pose (CVPR 2021)

Back to the Feature with PixLoc We introduce PixLoc, a neural network for end-to-end learning of camera localization from an image and a 3D model via

Computer Vision and Geometry Lab 610 Jan 05, 2023
An Unsupervised Graph-based Toolbox for Fraud Detection

An Unsupervised Graph-based Toolbox for Fraud Detection Introduction: UGFraud is an unsupervised graph-based fraud detection toolbox that integrates s

SafeGraph 99 Dec 11, 2022
Simple Tensorflow implementation of "Adaptive Convolutions for Structure-Aware Style Transfer" (CVPR 2021)

AdaConv — Simple TensorFlow Implementation [Paper] : Adaptive Convolutions for Structure-Aware Style Transfer (CVPR 2021) Note This repository does no

Junho Kim 26 Nov 18, 2022
Codebase for Image Classification Research, written in PyTorch.

pycls pycls is an image classification codebase, written in PyTorch. It was originally developed for the On Network Design Spaces for Visual Recogniti

Facebook Research 2k Jan 01, 2023
My published benchmark for a Kaggle Simulations Competition

Lux AI Working Title Bot Please refer to the Kaggle notebook for the comment section. The comment section contains my explanation on my code structure

Tong Hui Kang 29 Aug 22, 2022
A simple, clean TensorFlow implementation of Generative Adversarial Networks with a focus on modeling illustrations.

IllustrationGAN A simple, clean TensorFlow implementation of Generative Adversarial Networks with a focus on modeling illustrations. Generated Images

268 Nov 27, 2022
Locally cache assets that are normally streamed in POPULATION: ONE

Population One Localizer This is no longer needed as of the build shipped on 03/03/22, thank you bigbox :) Locally cache assets that are normally stre

Ahman Woods 2 Mar 04, 2022
Vpw analyzer - A visual J1850 VPW analyzer written in Python

VPW Analyzer A visual J1850 VPW analyzer written in Python Requires Tkinter, Pan

7 May 01, 2022
Automatic library of congress classification, using word embeddings from book titles and synopses.

Automatic Library of Congress Classification The Library of Congress Classification (LCC) is a comprehensive classification system that was first deve

Ahmad Pourihosseini 3 Oct 01, 2022
Create images and texts with the First Order Generative Adversarial Networks

First Order Divergence for training GANs This repository contains code accompanying the paper First Order Generative Advesarial Netoworks The majority

Zalando Research 35 Dec 11, 2021
NeuroGen: activation optimized image synthesis for discovery neuroscience

NeuroGen: activation optimized image synthesis for discovery neuroscience NeuroGen is a framework for synthesizing images that control brain activatio

3 Aug 17, 2022
Subgraph Based Learning of Contextual Embedding

SLiCE Self-Supervised Learning of Contextual Embeddings for Link Prediction in Heterogeneous Networks Dataset details: We use four public benchmark da

Pacific Northwest National Laboratory 27 Dec 01, 2022
[NeurIPS 2021] Better Safe Than Sorry: Preventing Delusive Adversaries with Adversarial Training

Better Safe Than Sorry: Preventing Delusive Adversaries with Adversarial Training Code for NeurIPS 2021 paper "Better Safe Than Sorry: Preventing Delu

Lue Tao 29 Sep 20, 2022
Official implementation of "DSP: Dual Soft-Paste for Unsupervised Domain Adaptive Semantic Segmentation"

DSP Official implementation of "DSP: Dual Soft-Paste for Unsupervised Domain Adaptive Semantic Segmentation". Accepted by ACM Multimedia 2021. Authors

20 Oct 24, 2022